A240855 Number of partitions p of n into distinct parts including the number of parts.
0, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 3, 5, 6, 8, 9, 10, 12, 16, 18, 22, 25, 29, 34, 41, 48, 55, 64, 74, 84, 98, 114, 130, 150, 170, 195, 222, 252, 287, 328, 371, 420, 475, 536, 604, 682, 766, 862, 970, 1088, 1218, 1365, 1526, 1704, 1904, 2124, 2366, 2637, 2934
Offset: 0
Keywords
Examples
a(10) counts these 4 partitions: 82, 631, 532, 4321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000 (first 101 terms from John Tyler Rascoe)
- Atul Dixit, Gaurav Kumar, and Aviral Srivastava, Non-Rascoe partitions and a rank parity function associated to the Rogers-Ramanujan partitions, arXiv:2508.04359 [math.CO], 2025. See references.
Programs
-
Maple
h:= (p, i)-> add(coeff(p, x, j)*x^j, j=i+1..degree(p)): b:= proc(n, i, p) option remember; `if`(i*(i+1)/2
[h(g[1], i), g[2]])(b(n, i-1, p)+ (f-> f+[0, coeff(f[1], x, i)])(b(n-i, min(n-i, i-1), p+1))))) end: a:= n-> b(n$2, 0)[2]: seq(a(n), n=0..58); # Alois P. Heinz, Mar 14 2024 -
Mathematica
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; MemberQ[p, Length[p]]], {n, 0, z}] (* this sequence *) Table[Count[f[n], p_ /; !MemberQ[p, Length[p]]], {n, 0, z}] (* A240861 *)
-
PARI
p_q(k) = {prod(j=1,k, 1-q^j);} mGB_q(N,M) = {p_q(N+M)/(p_q(M)*(p_q(N)^2));} A_q(N) = {my(q='q+O('q^N), g=sum(i=1, N, sum(j=1, i, q^((i*(i+1)/2)+(j*(j-1))) * mGB_q(j-1,i-j)))); concat([0], Vec(g)) } A_q(50) \\ John Tyler Rascoe, Mar 13 2024
Formula
G.f.: Sum_{i>0} Sum_{j=1..i} q^((i*(i+1)/2) + j*(j-1)) * [j-1,i-j]q, where [N,M]_q = Product{j=1..N+M}(1-q^j) / (Product_{j=1..M}(1-q^j) * (Product_{j=1..N}(1-q^j))^2). - John Tyler Rascoe, Mar 13 2024