cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240857 Triangle read by rows: T(0,0) = 0; T(n+1,k) = T(n,k+1), 0 <= k < n; T(n+1,n) = T(n,0); T(n+1,n+1) = T(n,0)+1.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 3, 0, 1, 1, 2, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 14 2014

Keywords

Comments

Let h be the initial term of row n, to get row n+1, remove h and then append h and h+1.

Examples

			.   0:                                 0
.   1:                               0   1
.   2:                             1   0   1
.   3:                           0   1   1   2
.   4:                         1   1   2   0   1
.   5:                       1   2   0   1   1   2
.   6:                     2   0   1   1   2   1   2
.   7:                   0   1   1   2   1   2   2   3
.   8:                 1   1   2   1   2   2   3   0   1
.   9:               1   2   1   2   2   3   0   1   1   2
.  10:             2   1   2   2   3   0   1   1   2   1   2
.  11:           1   2   2   3   0   1   1   2   1   2   2   3
.  12:         2   2   3   0   1   1   2   1   2   2   3   1   2
.  13:       2   3   0   1   1   2   1   2   2   3   1   2   2   3
.  14:     3   0   1   1   2   1   2   2   3   1   2   2   3   2   3
.  15:   0   1   1   2   1   2   2   3   1   2   2   3   2   3   3   4 .
		

Crossrefs

Cf. A048881 (left edge), A000120 (right edge), A000788 (row sums), A000523 (row maxima), A240883 (central terms).
Cf. A035327.

Programs

  • Haskell
    a240857 n k = a240857_tabl !! n !! k
    a240857_row n = a240857_tabl !! n
    a240857_tabl = iterate (\(x:xs) -> xs ++ [x, x + 1]) [0]
    
  • Mathematica
    T[n_, k_] := DigitCount[n + k + 1, 2, 1] - 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2023 *)
  • Python
    from math import isqrt
    def A240857(n): return (n-((r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)))*(r-3)>>1)).bit_count()-1 # Chai Wah Wu, Nov 11 2024

Formula

T(n,k) = A048881(n+k), 0 <= k <= n.
For n > 0: T(n,A035327(n)) = 0.