cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240859 Cubes k^3 such that k^3 + (k+1)^3 is semiprime.

Original entry on oeis.org

1, 8, 27, 125, 216, 512, 2744, 3375, 8000, 9261, 35937, 68921, 125000, 157464, 328509, 421875, 474552, 704969, 729000, 970299, 1157625, 1367631, 1685159, 2248091, 2628072, 2803221, 3581577, 3723875, 4741632, 5177717, 5451776, 6751269, 7301384, 9129329, 9938375
Offset: 1

Views

Author

K. D. Bajpai, Apr 13 2014

Keywords

Examples

			a(2) = 8 = 2^3: 2^3 + 3^3 = 35 = 5*7 which is a semiprime.
a(4) = 125 = 5^3: 5^3 + 6^3 = 341 = 11*31 which is a semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):KD:= proc() local a,b; a:=n^3+(n+1)^3;b:=bigomega(a); if b=2 then RETURN (n^3); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Transpose[Select[Partition[Range[250]^3,2,1],PrimeOmega[Total[#]] == 2&]] [[1]] (* Harvey P. Dale, Dec 15 2015 *)
  • PARI
    forprime(p=3,1e4,if(isprime((p^2+3)/4),print1((p^3 - 3*p^2 + 3*p - 1)/8", "))) \\ Charles R Greathouse IV, Aug 25 2014