A240884 Semiprimes of the form C(n) + T(n) where C(n) and T(n) are the n-th cube and triangular numbers.
33, 74, 237, 371, 1055, 1397, 10901, 12443, 30287, 39899, 55613, 80453, 207149, 303041, 360467, 407999, 639797, 1230821, 1650053, 2056511, 2695349, 2873441, 3454427, 3956873, 9823349, 10384103, 13680599, 15844877, 16419449, 20608499, 22705373, 26508143
Offset: 1
Examples
a(1) = 33: 3^3 + 3/2*(3+1) = 33 = 3*11, which is product of two primes and hence semiprime. a(3) = 237: 6^3 + 6/2*(6+1) = 237 = 3*79, which is product of two primes and hence semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..6556
Programs
-
Maple
with(numtheory):KD:= proc() local a,b; a:=(n)^3+n/2*(n+1);b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..500);
-
Mathematica
KD = {}; Do[t = n^3 + n/2*(n + 1); If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
-
PARI
has(n)=if(n%2, isprime(n) && isprime(n^2+n\2+1), isprime(n/2) && isprime(2*n^2+n+1)) for(n=1,1e4, if(has(n), print1(n^3+n*(n+1)/2", "))) \\ Charles R Greathouse IV, Aug 25 2014
Comments