cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240884 Semiprimes of the form C(n) + T(n) where C(n) and T(n) are the n-th cube and triangular numbers.

Original entry on oeis.org

33, 74, 237, 371, 1055, 1397, 10901, 12443, 30287, 39899, 55613, 80453, 207149, 303041, 360467, 407999, 639797, 1230821, 1650053, 2056511, 2695349, 2873441, 3454427, 3956873, 9823349, 10384103, 13680599, 15844877, 16419449, 20608499, 22705373, 26508143
Offset: 1

Views

Author

K. D. Bajpai, Apr 14 2014

Keywords

Comments

The n-th triangular number T(n) = n/2*(n+1).
All the terms in the sequence, except a(2), are odd.
Semiprimes (biprimes) in the sequence are product of two primes and simultaneously sum of n-th cube & triangular numbers.

Examples

			a(1) = 33: 3^3 + 3/2*(3+1) = 33 = 3*11, which is product of two primes and hence semiprime.
a(3) = 237: 6^3 + 6/2*(6+1) = 237 = 3*79, which is product of two primes and hence semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):KD:= proc() local a,b; a:=(n)^3+n/2*(n+1);b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..500);
  • Mathematica
    KD = {}; Do[t = n^3 + n/2*(n + 1); If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
  • PARI
    has(n)=if(n%2, isprime(n) && isprime(n^2+n\2+1), isprime(n/2) && isprime(2*n^2+n+1))
    for(n=1,1e4, if(has(n), print1(n^3+n*(n+1)/2", "))) \\ Charles R Greathouse IV, Aug 25 2014