cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A237627 Semiprimes of the form n^3 + n^2 + n + 1.

Original entry on oeis.org

4, 15, 85, 259, 1111, 4369, 47989, 65641, 291919, 2016379, 2214031, 3397651, 3820909, 5864581, 9305311, 13881841, 15687751, 16843009, 19756171, 22030681, 28746559, 62256349, 64160401, 74264821, 79692331, 101412319, 117889591, 172189309, 185518471, 191435329
Offset: 1

Views

Author

K. D. Bajpai, Apr 22 2014

Keywords

Comments

All the terms in the sequence, except a(1), are odd.
Since n^3 + n^2 + n + 1 = (n^2 + 1)(n + 1), it is a necessary condition for n^2 + 1 to be a prime, and n + 1 as well. - Alonso del Arte, Apr 22 2014

Examples

			85 is in the sequence since 4^3 + 4^2 + 4 + 1 = 85 = 5 * 17, which is a semiprime.
259 is in the sequence since 6^3 + 6^2 + 6 + 1 = 259 = 7 * 37 which is a semiprime.
585 is not in the sequence, because, although it is 8^3 + 8^2 + 8 + 1, it has more than two prime factors.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [1..1000] | IsSemiprime(s) where s is n^3+n^2+n+1]; // Bruno Berselli, Apr 23 2014
    
  • Maple
    select(x-> numtheory[bigomega](x)=2, [n^3+n^2+n+1$n=1..1500])[];
  • Mathematica
    A237627 = {}; Do[t = n^3 + n^2 + n + 1; If[PrimeOmega[t] == 2, AppendTo[A237627, t]], {n, 1500}]; A237627 (* K. D. Bajpai *)
    (* For the b-file: *) n = 0; Do[t = k^3 + k^2 + k + 1; If[PrimeOmega[t] == 2, n++; Print[n, " ", t]], {k, 300000}] (* K. D. Bajpai *)
    Select[Table[n^3 + n^2 + n + 1, {n, 500}], PrimeOmega[#] == 2 &] (* Alonso del Arte, Apr 22 2014 *)
  • PARI
    is(n)=isprime(n^2+1) && isprime(n+1) \\ Charles R Greathouse IV, Aug 25 2014
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A237627_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if isprime((p-1)**2+1):
                yield p*((p-1)**2+1)
    A237627_list = list(islice(A237627_gen(),20)) # Chai Wah Wu, Feb 27 2023
  • Sage
    A237627 = list(n^3 + n^2 + n + 1 for n in (1..1000) if is_prime(n^2+1) and is_prime(n+1)); print(A237627) # Bruno Berselli, Apr 23 2014 - see comment by Alonso del Arte
    

Formula

Union of {4} and the members of A176070. - R. J. Mathar, Oct 04 2018

A241102 Semiprimes of the form prime(n+1)^3 - prime(n)^3.

Original entry on oeis.org

218, 866, 345602, 477146, 726626, 1280666, 2291546, 3936602, 4113506, 6242402, 7154786, 13177946, 22395746, 26158466, 26763266, 30862946, 43352066, 52925402, 68952602, 74680706, 87646106, 96962402, 109499906, 112909466, 181632026, 192077786, 205335002, 257572226
Offset: 1

Author

K. D. Bajpai, Apr 16 2014

Keywords

Comments

All the terms in the sequence are even semiprimes.
All the terms in the sequence are congruent to 2 mod 3.

Examples

			a(1) = 201658 = 59^3 - 61^2: Also 201658 = 2*100829. Hence 201658 is semiprime.
a(2) = 563866 = 83^3 - 89^2: Also 563866 = 2*281933. Hence 563866 is semiprime.
		

Crossrefs

Cf. A001358 (semiprimes: product of two primes).
Cf. A046388 (odd numbers: p*q ( p and q are primes)).
Cf. A046315 (odd semiprimes: divisible by exactly 2 primes).
Cf. A240859 (cubes k^3: k^3 + (k+1)^3 are semiprimes).
Cf. A240884 (semiprimes: n-th cube + n-th triangular numbers).

Programs

  • Maple
    with(numtheory):KD:= proc() local a,b; a:=ithprime(n)^3 - ithprime(n+1)^2;b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..800);
  • Mathematica
    KD = {}; Do[t = Prime[n]^3 - Prime[n + 1]^2; If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
    n = 0; Do[t = Prime[k]^3 - Prime[k + 1]^2; If[PrimeOmega[t] == 2, n = n + 1; Print[n, " ", t]], {k, 1, 500000}] (* b- file *)
    Select[#[[2]]^3-#[[1]]^3&/@Partition[Prime[Range[1500]],2,1], PrimeOmega[ #] == 2&] (* Harvey P. Dale, Jul 01 2015 *)
    Select[Differences[Prime[Range[1500]]^3],PrimeOmega[#]==2&] (* Harvey P. Dale, May 26 2025 *)
  • PARI
    s=[]; for(n=1, 4000, t=prime(n+1)^3-prime(n)^3; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 16 2014
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A241102_gen(): # generator of terms
        p, q = 3**3, 5
        while True:
            if isprime((m:=q**3)-p>>1):
                yield m-p
            p, q = m, nextprime(q)
    A241102_list = list(islice(A241102_gen(),10)) # Chai Wah Wu, Feb 27 2023

A241060 Semiprimes of the form prime(n)^3 - prime(n+1)^2.

Original entry on oeis.org

201658, 563866, 1213162, 2229322, 4627534, 13593838, 29982262, 127004446, 318134506, 641966518, 948880006, 1340689846, 1671022954, 1827766126, 4241032018, 6055076206, 8775783286, 14009110642, 19917191062, 32482037662, 36682577026, 43862470342, 64900170418
Offset: 1

Author

K. D. Bajpai, Apr 15 2014

Keywords

Comments

All the terms in the sequence are even.

Examples

			a(1) = 201658 = 59^3 - 61^2: Also 201658 = 2*100829 (product of two primes). Hence 201658 is semiprime.
a(2) = 563866 = 83^3 - 89^2: Also 563866 = 2*281933 (product of two primes). Hence 563866 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):KD:= proc() local a,b; a:=ithprime(n)^3 - ithprime(n+1)^2; b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..800);
  • Mathematica
    KD = {}; Do[t = Prime[n]^3 - Prime[n + 1]^2; If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
    n = 0; Do[t = Prime[k]^3 - Prime[k + 1]^2; If[PrimeOmega[t] == 2, n = n + 1; Print[n, " ", t]], {k, 1, 500000}]
    Select[#[[1]]^3-#[[2]]^2&/@Partition[Prime[Range[600]],2,1],PrimeOmega[ #] == 2&] (* Harvey P. Dale, Nov 06 2020 *)
  • PARI
    s=[]; for(n=1, 10000, t=prime(n)^3-prime(n+1)^2; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 16 2014

A240914 Semiprimes of the form S(n) + T(n) where S(n) and T(n) are the n-th square and the n-th triangular numbers.

Original entry on oeis.org

15, 26, 57, 77, 155, 187, 301, 551, 737, 1027, 1457, 1751, 3197, 3337, 5251, 6767, 7597, 8251, 13301, 22387, 24257, 25807, 32047, 34277, 41417, 41917, 48151, 61307, 63757, 66887, 68801, 85801, 103097, 112751, 136957, 141527, 145237, 179747, 180787, 196747
Offset: 1

Author

K. D. Bajpai, Apr 14 2014

Keywords

Comments

The n-th triangular number T(n) = n/2*(n+1).
Semiprimes (biprimes) in the sequence are product of two primes, simultaneously sum of n-th square & triangular numbers.
All the terms in the sequence, except a(2), are odd numbers.

Examples

			a(1) = 15: 3^2 + 3/2*(3+1) = 15 = 3*5, which is product of two primes. Hence it is semiprime.
a(3) = 57: 6^2 + 6/2*(6+1) = 57 = 3*19, which is product of two primes. Hence it is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):KD:= proc() local a,b; a:=(n)^2 + n/2*(n+1);b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..500);
  • Mathematica
    KD = {}; Do[t = n^2 + n/2*(n + 1); If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
    c=0; Do[t=n^2 + n/2*(n+1); If[PrimeOmega[t]==2,c=c+1; Print[c," ",t]], {n,1,500000}];
    Module[{nn=500,s,t},s=Range[nn]^2;t=Accumulate[Range[nn]];Select[ Total/@ Thread[{s,t}],PrimeOmega[#]==2&]] (* or *) Select[ Table[ (n(1+3n))/2,{n,500}],PrimeOmega[#]==2&](* Harvey P. Dale, Feb 07 2018 *)
Showing 1-4 of 4 results.