A240914 Semiprimes of the form S(n) + T(n) where S(n) and T(n) are the n-th square and the n-th triangular numbers.
15, 26, 57, 77, 155, 187, 301, 551, 737, 1027, 1457, 1751, 3197, 3337, 5251, 6767, 7597, 8251, 13301, 22387, 24257, 25807, 32047, 34277, 41417, 41917, 48151, 61307, 63757, 66887, 68801, 85801, 103097, 112751, 136957, 141527, 145237, 179747, 180787, 196747
Offset: 1
Keywords
Examples
a(1) = 15: 3^2 + 3/2*(3+1) = 15 = 3*5, which is product of two primes. Hence it is semiprime. a(3) = 57: 6^2 + 6/2*(6+1) = 57 = 3*19, which is product of two primes. Hence it is semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..9010
Programs
-
Maple
with(numtheory):KD:= proc() local a,b; a:=(n)^2 + n/2*(n+1);b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..500);
-
Mathematica
KD = {}; Do[t = n^2 + n/2*(n + 1); If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD c=0; Do[t=n^2 + n/2*(n+1); If[PrimeOmega[t]==2,c=c+1; Print[c," ",t]], {n,1,500000}]; Module[{nn=500,s,t},s=Range[nn]^2;t=Accumulate[Range[nn]];Select[ Total/@ Thread[{s,t}],PrimeOmega[#]==2&]] (* or *) Select[ Table[ (n(1+3n))/2,{n,500}],PrimeOmega[#]==2&](* Harvey P. Dale, Feb 07 2018 *)
Comments