A240991 Integers m such that A240923(m) = 1, where A240923(n) = numerator(sigma(n)/n) - sigma(denominator(sigma(n)/n)).
6, 18, 28, 117, 162, 196, 496, 775, 1458, 8128, 9604, 13122, 15376, 19773, 24025, 88723, 118098, 257049, 470596, 744775, 796797, 1032256, 1062882, 2896363, 6725201, 9565938, 12326221, 14776336, 23059204, 25774633, 27237961, 33550336, 43441281, 63455131
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..67 (first 51 terms from Michel Marcus)
- C. A. Holdener and J. A. Holdener, Characterizing Quasi-Friendly Divisors, Journal of Integer Sequences, Vol. 23 (2020), Article 20.8.4.
- Index entries for sequences related to sigma(n)
- Index entries for sequences where odd perfect numbers must occur, if they exist at all
Crossrefs
Programs
-
Maple
filter:= proc(n) uses numtheory; local r; r:= sigma(n)/n; numer(r) - sigma(denom(r)) = 1 end proc: select(filter, [$1..10^5]); # Robert Israel, Aug 07 2014
-
Mathematica
a240923[n_Integer] := Numerator[DivisorSigma[1, n]/n] - DivisorSigma[1, Denominator[DivisorSigma[1, n]/n]]; a240991[n_Integer] := Flatten[Position[Thread[a240923[Range[n]]], 1]]; a240991[1000000] (* Michael De Vlieger, Aug 06 2014 *)
Comments