cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240930 a(n) = n^7 - n^6.

Original entry on oeis.org

0, 0, 64, 1458, 12288, 62500, 233280, 705894, 1835008, 4251528, 9000000, 17715610, 32845824, 57921708, 97883968, 159468750, 251658240, 386201104, 578207808, 846825858, 1216000000, 1715322420, 2380977984, 3256789558, 4395368448, 5859375000, 7722894400, 10072932714
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 7-digit positive integers in base n.

Crossrefs

Programs

  • Magma
    [n^7-n^6 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
  • Maple
    A240930:=n->n^7-n^6: seq(A240930(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Table[n^7 - n^6, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
    CoefficientList[Series[2 (32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
  • PARI
    vector(100, n, (n-1)^7 - (n-1)^6) \\ Derek Orr, Aug 03 2014
    

Formula

a(n) = n^6*(n-1) = n^7 - n^6.
a(n) = A001015(n) - A001014(n).
G.f.: 2*(32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 6 - Sum_{k=2..6} zeta(k). - Amiram Eldar, Jul 05 2020