A240931 a(n) = n^8 - n^7.
0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064, 38263752, 90000000, 194871710, 394149888, 752982204, 1370375552, 2392031250, 4026531840, 6565418768, 10407740544, 16089691302, 24320000000, 36021770820, 52381515648, 74906159834, 105488842752, 146484375000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Magma
[n^8-n^7 : n in [0..30]]; // Wesley Ivan Hurt, Aug 09 2014
-
Maple
A240931:=n->n^8-n^7: seq(A240931(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
-
Mathematica
Table[n^8 - n^7, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 09 2014 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,128,4374,49152,312500,1399680,4941258,14680064},30] (* Harvey P. Dale, Apr 29 2016 *)
-
PARI
vector(100, n, (n-1)^8 - (n-1)^7) \\ Derek Orr, Aug 03 2014
-
PARI
concat([0,0], Vec(-2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9 + O(x^100))) \\ Colin Barker, Aug 08 2014
Formula
a(n) = n^7*(n-1) = n^8 - n^7.
G.f.: -2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9. - Colin Barker, Aug 08 2014
Sum_{n>=2} 1/a(n) = 7 - Sum_{k=2..7} zeta(k). - Amiram Eldar, Jul 05 2020
Comments