A240941 Numbers k that divide 2^k + 7.
1, 3, 15, 75, 6308237, 871506915, 2465425275, 2937864075, 2948967789, 83313712623, 195392257275, 11126651718075, 45237726869109, 2920008144904215
Offset: 1
Examples
2^3 + 7 = 15 is divisible by 3. Thus 3 is a term of this sequence.
Links
- OEIS Wiki, 2^n mod n
Programs
-
Mathematica
k = 1; lst = {1,3}; While[k < 2500000001, If[ PowerMod[2, k, k] + 7 == k, AppendTo[ lst, k]; Print[ k]]; k += 2]; lst (* Robert G. Wilson v, Aug 05 2014 *)
-
PARI
for(n=1,10^9,if(Mod(2,n)^n==Mod(-7,n),print1(n,", ")))
Extensions
a(7)-a(9) from Robert G. Wilson v, Aug 05 2014
a(10)-a(14) from Max Alekseyev, Sep 23 2016
Comments