A240942 Numbers k that divide 2^k + 9.
1, 11, 121, 323, 117283, 432091, 4132384531, 15516834659, 15941429747, 98953554491, 3272831195051, 7362974489179, 26306805687881, 33869035218491, 280980898827691
Offset: 1
Examples
2^11 + 9 = 2057 is divisible by 11. Thus 11 is a term of this sequence.
Links
- OEIS Wiki, 2^n mod n
Programs
-
Maple
select(n -> 9 + 2 &^ n mod n = 0, [$1..10^6]); # Robert Israel, Aug 04 2014
-
PARI
for(n=1,10^9, if(Mod(2,n)^n==-9, print1(n,", "); ); );
Extensions
a(7)-a(10) from Lars Blomberg, Nov 05 2014
a(11)-a(15) from Max Alekseyev, Sep 29 2016
Comments