A240951 Maximum number of dividing subsets of a set of n natural numbers.
1, 2, 5, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
Examples
n = 3: only A={k,2k,3k}, where k is a natural number, has 5 dividing subsets. n = 4: {1, 2, 3, 6} has 8 dividing subsets: {1}, {2}, {3}, {6}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 6}. (Corrected by _Stan Wagon_, Nov 07 2015)
Links
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Cf. A000079.
Programs
-
Mathematica
Join[{1,2,5},NestList[2#&,8,40]] (* Harvey P. Dale, Sep 19 2021 *)
-
PARI
a(n)=if(n==3,5,2^(n-1)) \\ Charles R Greathouse IV, Nov 06 2015
Formula
a(n) = 2^(n-1) = A000079(n-1) if n>4.
From Stefano Spezia, May 03 2023: (Start)
O.g.f.: x*(1 + x^2 - 2*x^3)/(1 - 2*x).
E.g.f.: (x^3 + 3*exp(2*x) - 3)/6. (End)
Comments