A241016 Triangle read by rows: T(n, k) = sum of k-th row of n X n square filled with the numbers 1 through n^2 reading across rows left-to-right.
1, 3, 7, 6, 15, 24, 10, 26, 42, 58, 15, 40, 65, 90, 115, 21, 57, 93, 129, 165, 201, 28, 77, 126, 175, 224, 273, 322, 36, 100, 164, 228, 292, 356, 420, 484, 45, 126, 207, 288, 369, 450, 531, 612, 693, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 66, 187, 308, 429, 550
Offset: 1
Examples
The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 3 7 3: 6 15 24 4: 10 26 42 58 5: 15 40 65 90 115 6: 21 57 93 129 165 201 7: 28 77 126 175 224 273 322 8: 36 100 164 228 292 356 420 484 9: 45 126 207 288 369 450 531 612 693 10: 55 155 255 355 455 555 655 755 855 955 ... reformatted - _Wolfdieter Lang_, Dec 08 2014
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Kival Ngaokrajang, Illustration of initial terms
Crossrefs
Programs
-
Mathematica
Table[Sum[n*(k - 1) + j, {j,1,n}], {n,1,10}, {k,1,n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
-
PARI
trg(nn) = {for (n=1, nn, mm = matrix(n, n, i, j, j + n*(i-1)); for (i=1, n, print1(sum(j=1, n, mm[i, j]), ", ");); print(););} \\ Michel Marcus, Sep 15 2014
Formula
T(n, k) = Sum_{j=1..n} (n*(k-1)+ j), for n >= k >= 1. See the Michel Marcus program. - Wolfdieter Lang, Dec 08 2014
T(n, k) = binomial(n+1, 2) + n^2*(k-1). - Wolfdieter Lang, Dec 09 2014
Extensions
Edited. - Wolfdieter Lang, Dec 08 2014
Comments