A241021 Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 9 for i<>j, or 0 if no such prime exists.
19, 199, 1999, 99991, 199999, 9999991, 19999999, 0, 9199999999, 99999199999, 991999999999, 9919999999999, 99999999991999, 919999999999999, 9999999999999199, 99919999999999999, 0, 9991999999999999999, 99999199999999999999, 0, 9991999999999999999999
Offset: 2
Links
- Michel Lagneau, Table of n, a(n) for n = 2..150
Programs
-
Maple
with(numtheory):nn:=80:T:=array(1..nn): for n from 2 to nn do: for i from 1 to n do: T[i]:=9: od: ii:=0: for j from 1 to n while(ii=0)do: T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n): if type(s,prime)=true then ii:=1: printf(`%d, `,s): else T[j]:=9: fi: od: if ii=0 then printf(`%d, `,0): else fi: od:
-
Mathematica
Table[SelectFirst[FromDigits/@Table[Insert[PadRight[{},k,9],1,n],{n,k+1}],PrimeQ],{k,30}]/.Missing["NotFound"]->0 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2017 *)
Comments