cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241023 Central terms of the triangle in A102413.

Original entry on oeis.org

1, 4, 16, 76, 384, 2004, 10672, 57628, 314368, 1728292, 9560016, 53144172, 296642688, 1661529588, 9333781872, 52566230076, 296697618432, 1677889961028, 9505151782288, 53928746972812, 306393243712384, 1742920028025364, 9925790375394096, 56584659163097436
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 15 2014

Keywords

Crossrefs

Programs

  • Haskell
    a241023 n = a102413 (2 * n) n
  • Mathematica
    a[0] = 1; a[n_] := 4 Hypergeometric2F1[1 - n, n + 1, 1, -1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 28 2019 *)

Formula

a(n) = 4 * A047781(n).
a(n) = A102413(2*n,n).
a(n) = 2*Hyper2F1([-n, n], [1], -1) for n>0. - Peter Luschny, Aug 02 2014
D-finite g.f. = (1+x)/sqrt(1-6*x+x^2), pairwise sums of A001850. - R. J. Mathar, Jan 15 2020
From Peter Bala, Apr 16 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*(2^k)*binomial(2*k, k)*binomial(n+k-1, n-k).
a(n) = (-1)^(n+1) * 4*n * hypergeom([n+1, -n+1], [2], 2).
n*(2*n - 3)*a(n) = 4*(3*n^2 - 6*n + 2)*a(n-1) - (2*n - 1)*(n - 2)*a(n-2) with a(0) = 1 and a(1) = 4.
O.g.f.: Sum_{n >= 0} (2^n)*binomial(2*n,n)*x^n/(1 + x)^(2*n) = 1 + 4*x + 16*x^2 + 76*x^3 + 384*x^4 + .... (End)
From Peter Bala, Sep 18 2024: (Start)
a(n) = [x^n] 1/S(-x)^(2*n), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the large Schröder numbers A006318. Cf. A333481.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and r. (End)