A241065 Number of partitions p of n into distinct parts such that max(p) < -1 + 2*min(p).
0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 5, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 10, 11, 10, 12, 12, 13, 14, 15, 16, 17, 19, 18, 20, 22, 22, 25, 26, 27, 29, 30, 32, 34, 36, 37, 41, 43, 44, 47, 50, 51, 55, 58, 60, 65, 68, 70, 75, 78, 82, 85, 91
Offset: 0
Examples
a(17) counts these 3 partitions: {17}, {10, 7}, {9,8}.
Programs
-
Mathematica
z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < -1 + 2*Min[p]], {n, 0, z}] (* A241065 *) Table[Count[f[n], p_ /; Max[p] <= -1 + 2*Min[p]], {n, 0, z}] (* A240874 *) Table[Count[f[n], p_ /; Max[p] == -1 + 2*Min[p]], {n, 0, z}] (* A241067 *) Table[Count[f[n], p_ /; Max[p] >= -1 + 2*Min[p]], {n, 0, z}] (* A241068 *) Table[Count[f[n], p_ /; Max[p] > -1 + 2*Min[p]], {n, 0, z}] (* A241036 *)