cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241101 Primes p such that (p^3 - 4)/3 is prime.

Original entry on oeis.org

7, 31, 37, 43, 61, 73, 97, 103, 157, 163, 211, 277, 331, 337, 457, 487, 613, 661, 733, 751, 811, 883, 991, 1021, 1093, 1297, 1321, 1483, 1693, 1741, 1873, 2083, 2113, 2143, 2203, 2221, 2287, 2347, 2437, 2473, 2707, 2917, 3001, 3067, 3187, 3307, 3331, 3343, 3541
Offset: 1

Views

Author

K. D. Bajpai, Apr 16 2014

Keywords

Examples

			7 is prime and appears in the sequence because (7^3 - 4)/3 = 113 which is a prime.
31 is prime and appears in the sequence because (31^3 - 4)/3 = 9929 which is a prime.
		

Crossrefs

Cf. A109953 (primes p: (p^2+1)/3 is prime).
Cf. A118915 (primes p: (p^2+5)/6 is prime).
Cf. A118918 (primes p: (p^2+11)/12 is prime).

Programs

  • Maple
    KD:= proc() local a,b;a:=ithprime(n); b:=(a^3-4)/3; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[(#^3 - 4)/3] &]
    n = 0; Do[If[PrimeQ[(Prime[k]^3 - 4)/3], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}] (*b-file*)
  • PARI
    s=[]; forprime(p=2, 4000, if((p^3-4)%3==0 && isprime((p^3-4)/3), s=concat(s, p))); s \\ Colin Barker, Apr 16 2014