cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241102 Semiprimes of the form prime(n+1)^3 - prime(n)^3.

Original entry on oeis.org

218, 866, 345602, 477146, 726626, 1280666, 2291546, 3936602, 4113506, 6242402, 7154786, 13177946, 22395746, 26158466, 26763266, 30862946, 43352066, 52925402, 68952602, 74680706, 87646106, 96962402, 109499906, 112909466, 181632026, 192077786, 205335002, 257572226
Offset: 1

Views

Author

K. D. Bajpai, Apr 16 2014

Keywords

Comments

All the terms in the sequence are even semiprimes.
All the terms in the sequence are congruent to 2 mod 3.

Examples

			a(1) = 201658 = 59^3 - 61^2: Also 201658 = 2*100829. Hence 201658 is semiprime.
a(2) = 563866 = 83^3 - 89^2: Also 563866 = 2*281933. Hence 563866 is semiprime.
		

Crossrefs

Cf. A001358 (semiprimes: product of two primes).
Cf. A046388 (odd numbers: p*q ( p and q are primes)).
Cf. A046315 (odd semiprimes: divisible by exactly 2 primes).
Cf. A240859 (cubes k^3: k^3 + (k+1)^3 are semiprimes).
Cf. A240884 (semiprimes: n-th cube + n-th triangular numbers).

Programs

  • Maple
    with(numtheory):KD:= proc() local a,b; a:=ithprime(n)^3 - ithprime(n+1)^2;b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..800);
  • Mathematica
    KD = {}; Do[t = Prime[n]^3 - Prime[n + 1]^2; If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
    n = 0; Do[t = Prime[k]^3 - Prime[k + 1]^2; If[PrimeOmega[t] == 2, n = n + 1; Print[n, " ", t]], {k, 1, 500000}] (* b- file *)
    Select[#[[2]]^3-#[[1]]^3&/@Partition[Prime[Range[1500]],2,1], PrimeOmega[ #] == 2&] (* Harvey P. Dale, Jul 01 2015 *)
    Select[Differences[Prime[Range[1500]]^3],PrimeOmega[#]==2&] (* Harvey P. Dale, May 26 2025 *)
  • PARI
    s=[]; for(n=1, 4000, t=prime(n+1)^3-prime(n)^3; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 16 2014
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A241102_gen(): # generator of terms
        p, q = 3**3, 5
        while True:
            if isprime((m:=q**3)-p>>1):
                yield m-p
            p, q = m, nextprime(q)
    A241102_list = list(islice(A241102_gen(),10)) # Chai Wah Wu, Feb 27 2023