cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005134 Number of n-dimensional unimodular lattices (or quadratic forms).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 8, 9, 13, 16, 28, 40, 68, 117, 297, 665, 2566, 17059, 374062
Offset: 0

Views

Author

Keywords

Comments

King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

If 8 divides n, then a(n) = A054911(n) + A054909(n/8), otherwise a(n) = A054911(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025

Extensions

a(26)-a(28) added from Bill Allombert's and Gaëtan Chenevier's computations by Robin Visser, Jan 24 2025

A054911 Number of n-dimensional odd unimodular lattices (or quadratic forms).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665, 2566, 17059, 374062
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

Comments

a(n) is also the class number of Z^n (the standard lattice with the identity as the basis), as every n-dimensional odd unimodular lattice lies in the same genus as Z^n. - Robin Visser, Jan 24 2025
King gives the lower bounds a(29) >= 37938009 and a(30) >= 20169641025. - Robin Visser, Feb 08 2025

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.

Crossrefs

Programs

  • Magma
    function a(n)
        if n lt 3 then return Min(1,n); end if;
        L := NumberFieldLattice(QNF(), n);
        return #GenusRepresentatives(L);
    end function;  // Robin Visser, Jan 24 2025

Formula

If 8 divides n, then a(n) = A005134(n) - A054909(n/8), otherwise a(n) = A005134(n). - Robin Visser, Jan 24 2025
a(n) >= 2*A241121(n)/A241122(n). - Robin Visser, Feb 08 2025

A241121 Type I Minkowski-Siegel mass constants (numerators).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 31, 31, 691, 42151, 29713, 505121, 642332179, 692319119, 8003636403977, 248112728523287, 593468652605200909, 50904295073459007001, 1015740532498234470066371, 701876707956280018815862361
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2014

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, Chapter 16.

Crossrefs

Programs

  • Mathematica
    a[n_ /; 1 <= n <= 8] = 1/(n!*2^n); a[n_ /; n > 8] := (k = Quotient[n, 2]; r = Mod[n, 8]; Switch[r, 0, (1-2^-k)*(1 + 2^(1-k))/(k!*2)*BernoulliB[k]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], 1|7, (2^k+1)/(k!*2^(2k+1))*Product[BernoulliB[j], {j, 2, 2k, 2}], 2|6, 1/((k-1)!*2^(2k+1))*EulerE[k-1]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], 3|5, (2^k-1)/(k!*2^(2k+1))*Product[BernoulliB[j], {j, 2, 2k, 2}], 4, (1-2^-k)*(1-2^(1-k))/(k!*2)*BernoulliB[k]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], _, Print["error n = ", n]; 0] // Abs); Table[a[n] // Numerator, {n, 1, 30}]
  • Sage
    def a(n):
        if n==1: M = 1/2
        elif n%8 == 0: M = (1-2^(-n/2))*(1+2^(1-n/2))*bernoulli(n/2)/(2*factorial(n/2))
        elif n%8 in [1,7]: M = (2^((n-1)/2) + 1)/(2^n*factorial((n-1)/2))
        elif n%8 in [2,6]: M = euler_number(n/2-1)/(factorial(n/2-1)*(2^(n+1)))
        elif n%8 in [3,5]: M = (2^((n-1)/2) - 1)/(2^n*factorial((n-1)/2))
        elif n%8 == 4: M = (1-2^(-n/2))*(1-2^(1-n/2))*bernoulli(n/2)/(2*factorial(n/2))
        M *= product([abs(bernoulli(i)) for i in range(2, n, 2)])
        return abs(M).numerator()  # Robin Visser, Feb 08 2025

Formula

a(n)/A241122(n) ~ C * (n/(2*Pi*e*sqrt(e)))^(n^2/4) * (8*Pi*e/n)^(n/4) * (1/n)^(1/24), where C = 2^(-5/4) * e^(1/24) * exp(1/12 - zeta'(-1))^(-1/2) * Product_{i>=1} zeta(2*i) = 0.7048648734... [Kellner and Milnor--Husemoller]. - Robin Visser, Feb 08 2025
Showing 1-3 of 3 results.