cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241123 Smallest k such that the factorization of k! over distinct terms of A050376 contains exactly n primes.

Original entry on oeis.org

2, 3, 5, 13, 17, 21, 23, 37, 33, 42, 43, 56, 59, 57, 75, 84, 99, 101, 105, 109, 123, 119, 133, 139, 157, 162, 163, 182, 186, 183, 207, 208, 222, 219, 235, 220, 255, 257, 263, 268, 267, 303, 305, 307, 316, 315, 340, 344, 341, 343, 383, 385, 387, 397, 411, 425
Offset: 1

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			Factorization of 5! over distinct terms of A050376 is 5! = 2*3*4*5. Thus 5 is the smallest k such that such a factorization contains 3 primes: 2,3,5. So a(3)=5.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Mod[e, 2]; b[1] = 0; b[n_] := Plus @@ (f @@@ FactorInteger[n]); m = 56; v = Table[0, {m}]; c = 0; p = 1; n = 2; While[c < m, p *= n; i = b[p]; If[i <= m && v[[i]] == 0, c++; v[[i]] = n]; n++]; v (* Amiram Eldar, Sep 17 2019 *)
  • PARI
    nbp(n) = {f = factor(n); sum (i=1, #f~, f[i,2] % 2);}
    a(n) = {k = 1; while(nbp(k!) != n, k++); k;} \\ Michel Marcus, Apr 27 2014

Extensions

More terms from Peter J. C. Moses, Apr 17 2014