A241124 Smallest k such that the factorization of k! over distinct terms of A050376 contains at least n nonprime terms of A050376.
4, 6, 8, 12, 14, 15, 16, 24, 25, 26, 30, 32, 46, 46, 48, 48, 62, 63, 63, 64, 64, 87, 91, 95, 96, 96, 96, 114, 114, 122, 124, 125, 128, 129, 160, 161, 176, 177, 178, 178, 188, 189, 190, 192, 192, 192, 194, 225, 226, 226, 240, 252, 254, 255, 256, 288, 288, 289, 290, 320
Offset: 1
Keywords
Examples
For k=2,3,4,5,6, we have the following factorizations of k! over distinct terms of A050376: 2!=2, 3!=2*3, 4!=2*3*4, 5!=2*3*4*5, 6!=5*9*16. Therefore, a(1)=4, a(2)=6.
Crossrefs
Programs
-
Mathematica
f[n_] := DigitCount[n, 2, 1] - Mod[n, 2]; nb[n_] := Total@(f/@ FactorInteger[n][[;;,2]]); a[n_] := (k=1; While[nb[k!] < n, k++]; k); Array[a, 60] (* Amiram Eldar, Dec 16 2018 from the PARI code *)
-
PARI
nb(n) = {my(f = factor(n)); sum(k=1, #f~, hammingweight(f[k,2]) - (f[k,2] % 2));} a(n) = {my(k=1); while (nb(k!) < n, k++); k;} \\ Michel Marcus, Dec 16 2018
Extensions
More terms from Michel Marcus, Dec 16 2018