A241151 Number of distinct degrees in the partition graph G(n) defined at A241150.
1, 2, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13, 13, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 19, 19, 19, 19, 19
Offset: 2
Examples
(See the Example section of A241150.)
Programs
-
Mathematica
z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]]; unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]]; Column[m] (* A241150 as an array *) Flatten[m] (* A241150 as a sequence *) Table[Length[m[[n]]], {n, 1, z}] (* A241151 *) Table[Max[m[[n]]], {n, 1, z}] (* A241152 *) Table[Last[m[[n]]], {n, 1, z}] (* A241153 *) (* Next, show the graph G(k) *) k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)
Comments