cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241170 Steffensen's bracket function [n,n-3].

Original entry on oeis.org

6, 25, 67, 145, 275, 476, 770, 1182, 1740, 2475, 3421, 4615, 6097, 7910, 10100, 12716, 15810, 19437, 23655, 28525, 34111, 40480, 47702, 55850, 65000, 75231, 86625, 99267, 113245, 128650, 145576, 164120, 184382, 206465, 230475, 256521, 284715, 315172
Offset: 3

Views

Author

N. J. A. Sloane, Apr 22 2014

Keywords

Crossrefs

A diagonal of the triangular array in A241168.

Programs

  • Magma
    [(n-2)*(n-1)*(24+7*n+3*n^2)/24: n in [3..50]]; // Vincenzo Librandi, Dec 12 2014
    
  • Magma
    I:=[6,25,67,145,275]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 12 2014
    
  • Maple
    with(combinat);
    T:=proc(n,k) add(stirling2(n,s+1)*s!/k!,s=k..n-1); end;
    [seq(T(n,n-3),n=3..16)];
  • Mathematica
    Table[(n-2)*(n-1)*(24 + 7*n + 3*n^2)/24,{n,3,20}] (* Vaclav Kotesovec, Apr 23 2014 *)
    CoefficientList[Series[(6 - 5 x + 2 x^2) / (1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 12 2014 *)
  • PARI
    for(n=3,30, print1((n-2)*(n-1)*(24+7*n+3*n^2)/24, ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

See A241168.
a(n) = (n-2)*(n-1)*(24 + 7*n + 3*n^2)/24. - Vaclav Kotesovec, Apr 23 2014
From Vincenzo Librandi, Dec 12 2014: (Start)
G.f.: x^3*(6-5*x+2*x^2)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.(End)