cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241200 For the n in A241199, the index of the first of 4 terms in binomial(n,k) that satisfy a quadratic relation.

Original entry on oeis.org

2, 4, 9, 12, 19, 23, 32, 37, 48, 54, 67, 74, 89, 97, 114, 123, 142, 152, 173, 184, 207, 219, 244, 257, 284, 298, 327, 342, 373, 389, 422, 439, 474, 492, 529, 548, 587, 607, 648, 669, 712, 734, 779, 802, 849, 873, 922, 947, 998, 1024, 1077, 1104, 1159, 1187
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

This value of k appears to approach n/2 as n grows larger.

Examples

			Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 quadratic terms begin at k = 2.
		

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199 (the values of n).

Programs

  • Mathematica
    t = {}; Do[b = Binomial[n, Range[0, n/2]]; d = Differences[b, 3]; If[MemberQ[d, 0], AppendTo[t, Position[d, 0, 1, 1][[1, 1]] - 1]], {n, 3000}]; t
    LinearRecurrence[{1,2,-2,-1,1},{2,4,9,12,19},60] (* Harvey P. Dale, Dec 18 2022 *)
  • PARI
    Vec(x*(x^2-2)*(x^2+x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015

Formula

a(n) = (-11-5*(-1)^n-2*(-15+(-1)^n)*n+6*n^2)/16. G.f.: x*(x^2-2)*(x^2+x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 2, 4, 9, 12, 19. - T. D. Noe, Apr 18 2014