A241206 Greatest n-digit prime having at least n-1 identical digits.
7, 97, 997, 9949, 99991, 999979, 9999991, 99999989, 999999929, 9999999929, 99999999599, 999999999989, 9999999999799, 99999999999959, 999999999999989, 9999999999999199, 99999999999999997, 999999999999999989, 9999999999999999919, 99999999999999999989, 999999999999999999899, 9999999999999999999929
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000 (corrected by _Georg Fischer_, Jan 20 2019)
Programs
-
Maple
with(numtheory):lst:={}:nn:=30:kk:=0:T:=array(1..nn):U:=array(1..20): for n from 2 to nn do: for i from 1 to n do: T[i]:=9: od: ii:=0: for j from 1 to n while(ii=0)do: for k from 9 by -1 to 0 while(ii=0)do: T[n-j+1]:=k:s:=sum('T[i]*10^(n-i)', 'i'=1..n): if type(s,prime)=true and length(s)=n then ii:=1: kk:=kk+1:U[kk]:=s: else T[n-j+1]:=9: fi: od: od: od : print(U) :
-
Mathematica
Table[SelectFirst[Reverse@ Prime@ Range[PrimePi[10^(n - 1)] + 1, PrimePi[10^n - 1]], Max@ DigitCount@ # >= (n - 1) &], {n, 2, 8}] (* WARNING: the following assumes the conjecture is true WARNING *) Table[SelectFirst[Select[Reverse@ Union@ Map[FromDigits, Join @@ Map[Permutations[Append[Table[9, {n - 1}], #]] &, Range[0, 9]]], PrimeQ@ # && IntegerLength@ # == n &], Max@ DigitCount@ # >= (n - 1) &], {n, 2, 20}] (* Michael De Vlieger, Dec 10 2015, Version 10 *)
-
Python
from _future_ import division from sympy import isprime def A241206(n): for i in range(9,0,-1): x = i*(10**n-1)//9 for j in range(n-1,-1,-1): for k in range(9-i,-1,-1): y = x + k*(10**j) if isprime(y): return y for j in range(n): for k in range(1,i+1): if j < n-1 or k < i: y = x-k*(10**j) if isprime(y): return y # Chai Wah Wu, Dec 29 2015
Extensions
a(1) added - N. J. A. Sloane, Dec 29 2015
Comments