cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A268702 Largest n digit prime having at least n-1 digits equal to 1.

Original entry on oeis.org

7, 71, 911, 8111, 16111, 911111, 1171111, 71111111, 131111111, 1711111111, 31111111111, 311111111111, 5111111111111, 41111111111111, 111151111111111, 5111111111111111, 11111611111111111, 191111111111111111, 2111111111111111111, 11111111611111111111
Offset: 1

Views

Author

Keywords

Examples

			a(3) = 911 since 111, 211, 311, ..., 811 are all composites but 911 is prime. Also of the ten primes of 3 digits which contain at least 2 ones, {101, 113, 131, 151, 181, 191, 211, 311, 811, 911}, 911 is the greatest.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = {}, r = (10^n - 1)/9, s = Range@ 10 - 2}, While[k < n, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Max@ Flatten@ p]; Array[f, 20]
  • PARI
    a(n) = {p = precprime(10^n-1); while (#select(x->x==1, digits(p)) != n-1, p = precprime(p-1)); p;} \\ Michel Marcus, Feb 21 2016

A268707 Smallest n-digit prime having at least n-1 digits equal to 9.

Original entry on oeis.org

2, 19, 199, 1999, 49999, 199999, 2999999, 19999999, 799999999, 9199999999, 59999999999, 959999999999, 9919999999999, 59999999999999, 499999999999999, 9299999999999999, 99919999999999999, 994999999999999999, 9991999999999999999, 29999999999999999999
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = {}, r = (10^n - 1), s = Range@ 10 - 10}, While[k < n - 0, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Min@ Flatten@ p]; Array[f, 20]
  • PARI
    a(n)=my(t=10^n-1,p); forstep(d=n-1,0,-1, forstep(k=8,1,-1, p=t-10^d*k; if(ispseudoprime(p), return(p)))); -1 \\ Charles R Greathouse IV, Mar 21 2016

A178007 Largest n-digit prime with the most digits equal to 9.

Original entry on oeis.org

7, 97, 997, 9949, 99991, 999979, 9999991, 99999989, 999999929, 9999999929, 99999999599, 999999999989, 9999999999799, 99999999999959, 999999999999989, 9999999999999199, 99999999999999997, 999999999999999989, 9999999999999999919, 99999999999999999989, 999999999999999999899, 9999999999999999999929
Offset: 1

Views

Author

Lekraj Beedassy, May 17 2010

Keywords

Comments

First maximum the number of 9's, then choose the largest.
From Robert Israel, Dec 18 2024: (Start)
This is believed to be different from A241206, as there should be infinitely many n for which there is no n-digit prime with n-1 digits equal to 9. No examples are known; the least such n is greater than 3400. (End)

Crossrefs

Programs

  • Maple
    f:= proc(n) local i,j,a,b,x,y;
         x:= 10^n-1;
         for i from 0 to n-1 do
           for a from 1 to 9 do
             y:= x - a*10^i;
             if isprime(y) then return y fi;
         od od;
         for i from 1 to n-1 do
           for a from 1 to 9 do
             for j from 0 to i-1 do
               for b from 1 to 9 do
                 y:= x - a*10^i - b*10^j;
                 if isprime(y) then return y fi
        od od od od;
        FAIL
    end proc:
    map(f, [$1..30]); # Robert Israel, Dec 16 2024

Extensions

Corrected and more terms by Robert Israel, Dec 16 2024

A268703 Smallest n-digit prime having at least n-1 digits equal to 3.

Original entry on oeis.org

2, 13, 233, 2333, 23333, 313333, 3233333, 31333333, 333233333, 3233333333, 23333333333, 333313333333, 3333333333383, 33133333333333, 323333333333333, 1333333333333333, 23333333333333333, 333333133333333333, 3333313333333333333, 33313333333333333333
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = {}, r = (10^n - 1)/3, s = Range@ 10 - 4}, While[k < n, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Min@ Flatten@ p]; f[1] = 2; f[2] = 13; Array[f, 20]

A268706 Largest n-digit prime having at least n-1 digits equal to 7.

Original entry on oeis.org

7, 97, 977, 7877, 97777, 787777, 7877777, 77777747, 787777777, 8777777777, 79777777777, 777777779777, 7877777777777, 77777779777777, 778777777777777, 8777777777777777, 77797777777777777, 797777777777777777, 7777877777777777777, 97777777777777777777
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local r,i,j,p;
      r:= 7*(10^n-1)/9;
      for p in sort([r, seq(seq(r + i*10^j, i=[$(-7)..(-1),1,2]),j=0..n-1)],`>`) do
        if isprime(p) then return p fi
      od;
      error("no prime found")
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 24 2016
  • Mathematica
    f[n_] := Block[{k = 0, p = {}, r = 7 (10^n - 1)/9, s = Range@ 10 - 8}, While[k < n, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Max@ Flatten@ p]; Array[f, 20]

A268704 Greatest n-digit prime having at least n-1 digits equal to 3.

Original entry on oeis.org

7, 83, 733, 7333, 38333, 733333, 3733333, 83333333, 373333333, 3334333333, 38333333333, 383333333333, 3433333333333, 53333333333333, 383333333333333, 3733333333333333, 43333333333333333, 353333333333333333, 3333334333333333333, 33343333333333333333
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = {}, r = (10^n - 1)/3, s = Range@ 10 - 4}, While[k < n, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Max@ Flatten@ p]; Array[f, 20]
    Table[Max[Select[FromDigits/@Flatten[Permutations/@Table[PadRight[{n},k,3],{n,{1,2,4,5,7,8}}],1],IntegerLength[#]==k&&PrimeQ[#]&]],{k,20}] (* Harvey P. Dale, Apr 11 2020 *)

A268705 Smallest n-digit prime having at least n-1 digits equal to 7.

Original entry on oeis.org

2, 17, 277, 1777, 47777, 727777, 7477777, 77767777, 577777777, 1777777777, 67777777777, 377777777777, 7177777777777, 17777777777777, 577777777777777, 2777777777777777, 77777767777777777, 377777777777777777, 2777777777777777777, 71777777777777777777
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = {}, r = 7(10^n - 1)/9, s = Range@ 10 - 8}, While[k < n, AppendTo[p, Select[r + 10^k*s, PrimeQ]]; k++]; p = Min@ Flatten@ p]; f[1] = 2; f[2] = 17; Array[f, 20]
    Table[Min[Select[FromDigits/@Flatten[Permutations/@Table[Join[ {n},PadRight[ {},k,7]],{n,0,9}],1],IntegerLength[#]==k+1&&PrimeQ[#]&]],{k,0,20}] (* Harvey P. Dale, Jan 23 2021 *)

A385280 a(n) is the number of n-digit primes of which all digits except one are the same.

Original entry on oeis.org

4, 20, 46, 43, 40, 53, 35, 49, 40, 38, 44, 52, 35, 45, 49, 42, 38, 57, 27, 45, 38, 47, 37, 52, 33, 45, 56, 38, 36, 65, 29, 56, 48, 40, 38, 58, 37, 33, 57, 40, 37, 61, 41, 39, 37, 44, 36, 55, 47, 43, 47, 43, 35, 62, 43, 46, 29, 35, 37, 56, 39, 41, 46, 48, 39, 74, 45, 34, 34, 35, 34, 67, 39, 45, 43
Offset: 1

Views

Author

Robert Israel, Jun 24 2025

Keywords

Comments

a(n) is the number of n-digit primes obtained by changing one digit of an n-digit repdigit.

Examples

			a(5) = 40 because there are 40 5-digit primes of which all digits but one are the same, namely 10111, 11113, 11117, 11119, 11131, 11161, 11171, 11311, 11411, 16111, 22229, 23333, 31333, 33331, 33343, 33353, 33533, 38333, 44449, 47777, 49999, 59999, 67777, 71777, 76777, 77377, 77477, 77747, 77773, 77797, 77977, 79777, 79999, 88883, 94999, 97777, 98999, 99929, 99989, 99991.
		

Crossrefs

Essentially the same as A258915.

Programs

  • Maple
    f:= proc(n)
         local i,j,m, m2, t;
         t:= 0;
         for i from 1 to 9 do
           for j in {$0..9} minus {i} do
              if (n-1)*i + j mod 3 = 0 then next fi;
              if j = 0 then m2:= n-2 else m2:= n-1 fi;
              if not member(i,{1,3,7,9}) then m2:= 0 fi;
              t:= t + nops(select( isprime,{seq((10^n-1)/9*i + 10^m*(j-i),m=0..m2)}))
         od od;
         t
    end proc:
    f(1):= 4: f(2):= 20:
    map(f, [$1..100]);
  • Python
    from gmpy2 import is_prime, digits
    def a(n):
        Rn = (10**n-1)//9
        return len(set(t for d in range(1, 10) for i in range(n if d in {1, 3, 7, 9} else 1) for c in set(range(-d, 10-d))-{0} if len(digits(t:=d*Rn+c*10**i))==n and is_prime(t)))
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Jun 25 2025
Showing 1-8 of 8 results.