A241241 If x is in the sequence then so are x^2 and x(x+1)/2.
0, 1, 2, 3, 4, 6, 9, 10, 16, 21, 36, 45, 55, 81, 100, 136, 231, 256, 441, 666, 1035, 1296, 1540, 2025, 3025, 3321, 5050, 6561, 9316, 10000, 18496, 26796, 32896, 53361, 65536, 97461, 194481, 222111, 443556, 536130, 840456, 1071225, 1186570, 1679616, 2051325
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a241241 n = a241241_list !! (n-1) a241241_list = 0 : 1 : f (singleton 2) where f s = m : f (insert (a000290 m) $ insert (a000217 m) s') where (m, s') = deleteFindMin s
-
Mathematica
Nest[Flatten[{#,#^2,(#(#+1))/2}]&,{0,1,2},5]//Union (* Harvey P. Dale, Aug 12 2016 *)
Extensions
Initial 0 and 1 prepended by Jon Perry, Apr 17 2014