cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241370 T(n,k)=Number of nXk 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

1, 1, 2, 2, 7, 5, 4, 28, 47, 14, 8, 121, 460, 326, 41, 16, 523, 4617, 7376, 2284, 122, 32, 2261, 46245, 169982, 118488, 16026, 365, 64, 9775, 463567, 3910194, 6280325, 1904096, 112458, 1094, 128, 42261, 4646421, 90008909, 332185927, 232173463
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Table starts
....1.......1..........2..............4.................8...................16
....2.......7.........28............121...............523.................2261
....5......47........460...........4617.............46245...............463567
...14.....326.......7376.........169982...........3910194.............90008909
...41....2284.....118488........6280325.........332185927..........17583615124
..122...16026....1904096......232173463.......28238828935........3437694358689
..365..112458...30598800.....8582759752.....2400505507498......672068364873884
.1094..789166..491723328...317280724429...204061855414167...131390467341043995
.3281.5537942.7902006144.11729003927933.17346886991310331.25687100469219790719

Examples

			Some solutions for n=4 k=4
..0..1..0..1....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2
..1..1..2..0....1..0..2..1....0..2..0..0....2..0..0..1....0..1..2..1
..1..2..2..0....2..0..0..1....1..2..0..0....1..0..2..0....2..0..1..0
..1..2..2..1....0..1..0..2....0..1..0..1....2..0..1..2....1..0..1..0
		

Crossrefs

Column 1 is A007051(n-1)
Row 1 is A000079(n-2)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 7*a(n-1) +2*a(n-3) -8*a(n-4) for n>5
k=3: [order 8]
k=4: [order 31]
k=5: [order 94]
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 5*a(n-1) -2*a(n-2) -4*a(n-3) for n>5
n=3: a(n) = 9*a(n-1) +16*a(n-2) -50*a(n-3) -72*a(n-4) -32*a(n-5) -32*a(n-6) for n>8
n=4: [order 21] for n>23
n=5: [order 65] for n>67