A241407 Numbers n such that n^2 == -1 (mod 73).
27, 46, 100, 119, 173, 192, 246, 265, 319, 338, 392, 411, 465, 484, 538, 557, 611, 630, 684, 703, 757, 776, 830, 849, 903, 922, 976, 995, 1049, 1068, 1122, 1141, 1195, 1214, 1268, 1287, 1341, 1360, 1414, 1433, 1487, 1506, 1560, 1579, 1633, 1652, 1706, 1725
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Cf. similar sequences listed in A155107.
Programs
-
Magma
I:=[27,46,100]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]];
-
Magma
[-27*(-1)^n+73*Floor(n/2): n in [1..50]];
-
Mathematica
Select[Range[1500], PowerMod[#, 2, 73] == 72 &] (* or *) CoefficientList[ Series[(27 + 19 x + 27 x^2)/((1 + x) (1 - x)^2), {x, 0, 100}], x] Table[73n+{27,46},{n,0,30}]//Flatten (* or *) LinearRecurrence[{1,1,-1},{27,46,100},60] (* Harvey P. Dale, Jun 13 2017 *)
Formula
G.f.: x*(27 + 19*x + 27*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>2.
a(n) = a(n-2) + 73 for all n>2.
a(n) = -27*(-1)^n + 73*floor(n/2).
Comments