A241419 Number of numbers m <= n that have a prime divisor greater than sqrt(n) (i.e., A006530(m)>sqrt(n)).
0, 1, 2, 1, 2, 3, 4, 4, 2, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 13, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 23, 23, 24, 25, 25, 19, 19, 20, 21, 22, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 28, 29, 30, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 38
Offset: 1
Keywords
Examples
a(12) = 4, because there are four values of m = {5, 7, 10, 11} that have prime divisors that exceed sqrt(12) = 3.464... These prime divisors are {5, 7, 5, 11} respectively.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..5000
- E. Naslund, The Average Largest Prime Factor, Integers, Vol. 13 (2013), A81. See "2. The Main Theorem."
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) MF:= map(m -> max(numtheory:-factorset(m))^2,<($1..N)>): MF[1]:= 0: seq(nops(select(m -> MF[m]>n, [$1..n])),n=1..N); # Robert Israel, Aug 11 2014
-
Mathematica
a241419[n_Integer] := Module[{f}, f = Reap[For[m = 1, m <= n, m++, If[Max[First[Transpose[FactorInteger[m]]]] > Sqrt[n], Sow[m], False]]]; If[Length[f[[2]]] == 0, Length[f[[2]]], Length[f[[2, 1]]]]]; a241419[120]
-
PARI
isok(i, n) = {my(f = factor(i)); my(sqrn = sqrt(n)); for (k=1, #f~, if ((p=f[k, 1]) && (p>sqrn) , return (1)););} a(n) = sum(i=1, n, isok(i, n)); \\ Michel Marcus, Aug 11 2014
-
PARI
A241419(n) = my(r=0); forprime(p=sqrtint(n)+1,n, r+=n\p); r; \\ Max Alekseyev, Nov 14 2017
-
Python
from math import isqrt from sympy import primerange def A241419(n): return int(sum(n//p for p in primerange(isqrt(n)+1,n+1))) # Chai Wah Wu, Oct 06 2024
Formula
a(n) = Sum_{prime p > sqrt(n)} floor(n/p). - Max Alekseyev, Nov 14 2017
Comments