cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241420 Decimal expansion of D(1/2), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).

Original entry on oeis.org

1, 5, 4, 9, 1, 2, 6, 5, 9, 2, 5, 7, 7, 5, 6, 2, 1, 6, 8, 3, 6, 9, 5, 7, 2, 5, 3, 3, 8, 4, 9, 4, 0, 9, 9, 2, 6, 9, 3, 7, 0, 2, 9, 8, 6, 3, 4, 1, 0, 0, 4, 8, 3, 6, 2, 8, 9, 9, 9, 9, 6, 7, 1, 0, 3, 9, 9, 8, 3, 8, 0, 0, 8, 3, 6, 5, 4, 3, 2, 9, 8, 7, 4, 0, 6, 5, 1, 1, 4, 0, 9, 2, 0, 7, 0, 0, 8, 0, 6, 1, 5, 4, 6, 4
Offset: 1

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			1.54912659257756216836957253384940992693702986341004836289999671...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 136.

Crossrefs

Cf. A006752, A019610 (D(2)), A074962, A241421 (D(1)).

Programs

  • Mathematica
    (E^(Catalan/Pi)*Glaisher^3*Sqrt[Gamma[3/4]/Gamma[1/4]])/2^(1/12) // RealDigits[#, 10, 104]& // First
  • PARI
    default(realprecision, 100); A=exp(1/12-zeta'(-1)); exp(Catalan/Pi)*A^3*sqrt(gamma(3/4)/gamma(1/4))/2^(1/12) \\ G. C. Greubel, Aug 24 2018

Formula

D(x) = lim_{n->infinity} ( Product_{k=1..2n+1} (1+x/k)^((-1)^(k+1)*k) ).
D(x) = (e^(x/2-1/4)*A^3*G((x+1)/2)^2*Gamma(x/2)^(x-2)*Gamma((x+1)/2)^(1-x)*(Gamma((x+1)/2)/Gamma(x/2))^x)/(2^(1/12)*G(x/2)^2), where A is the Glaisher-Kinkelin constant and G is the Barnes G-function.
D(1/2) = (e^(C/Pi)*A^3*sqrt(Gamma(3/4)/Gamma(1/4)))/2^(1/12), where C is Catalan's constant.