cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A019610 Decimal expansion of Pi*e/2.

Original entry on oeis.org

4, 2, 6, 9, 8, 6, 7, 1, 1, 1, 3, 3, 6, 7, 8, 3, 5, 3, 2, 7, 3, 1, 7, 7, 5, 4, 3, 4, 7, 7, 3, 2, 8, 7, 2, 4, 7, 5, 1, 7, 4, 4, 4, 2, 6, 7, 8, 8, 2, 5, 5, 7, 4, 8, 0, 9, 3, 9, 8, 0, 0, 5, 6, 5, 0, 8, 9, 6, 1, 4, 3, 0, 5, 5, 7, 8, 6, 6, 5, 4, 0, 3, 7, 8, 6, 2, 8, 1, 9, 3, 4, 8, 5, 5, 2, 3, 6, 9, 7
Offset: 1

Views

Author

Keywords

Examples

			4.26986711133678353273177543477328724751744426788255748...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 136.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*Exp(1)/2; // G. C. Greubel, Aug 24 2018
  • Maple
    Digits:=100: evalf(Pi*exp(1)/2); # Wesley Ivan Hurt, Aug 09 2014
  • Mathematica
    RealDigits[(Pi*E)/2,10,120][[1]] (* Harvey P. Dale, Apr 16 2014 *)
  • PARI
    { default(realprecision, 100); x=(1/2)*Pi*exp(1); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 13 2015
    

Formula

Melzak's formula: lim_{n->infinity} Product_{k=1..2n+1} (1+2/k)^(k*(-1)^(k+1)) = Pi*e/2. - Jean-François Alcover, Apr 25 2014

A241421 Decimal expansion of D(1), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).

Original entry on oeis.org

2, 2, 3, 5, 8, 8, 5, 5, 9, 5, 5, 0, 8, 9, 6, 9, 8, 6, 4, 2, 8, 3, 9, 6, 4, 7, 9, 9, 3, 1, 1, 8, 9, 0, 6, 4, 4, 8, 4, 5, 1, 5, 9, 1, 2, 2, 8, 5, 9, 5, 2, 4, 7, 4, 7, 7, 9, 3, 4, 4, 7, 9, 7, 8, 2, 6, 0, 6, 2, 7, 0, 8, 1, 4, 5, 7, 2, 5, 2, 2, 1, 7, 9, 3, 2, 8, 3, 2, 0, 2, 9, 5, 2, 8, 3, 2, 3, 4, 6, 2, 8, 9, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			2.23588559550896986428396479931189064484515912285952474779344797826...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 136.

Crossrefs

Cf. A006752, A019610 (D(2)), A074962, A241420 (D(1/2)).

Programs

  • Mathematica
    RealDigits[Glaisher^6/(2^(1/6)*Sqrt[Pi]), 10, 104] // First
  • PARI
    default(realprecision, 100); A=exp(1/12-zeta'(-1)); A^6/(2^(1/6)* sqrt(Pi)) \\ G. C. Greubel, Aug 24 2018

Formula

D(x) = lim_{n->infinity} ( Product_{k=1..2n+1} (1+x/k)^((-1)^(k+1)*k) ).
D(x) = (e^(x/2-1/4)*A^3*G((x+1)/2)^2*Gamma(x/2)^(x-2)*Gamma((x+1)/2)^(1-x)*(Gamma((x+1)/2)/Gamma(x/2))^x)/(2^(1/12)*G(x/2)^2), where A is the Glaisher-Kinkelin constant and G is the Barnes G-function.
D(1) = A^6/(2^(1/6)*sqrt(Pi)).
Showing 1-2 of 2 results.