cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A241420 Decimal expansion of D(1/2), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).

Original entry on oeis.org

1, 5, 4, 9, 1, 2, 6, 5, 9, 2, 5, 7, 7, 5, 6, 2, 1, 6, 8, 3, 6, 9, 5, 7, 2, 5, 3, 3, 8, 4, 9, 4, 0, 9, 9, 2, 6, 9, 3, 7, 0, 2, 9, 8, 6, 3, 4, 1, 0, 0, 4, 8, 3, 6, 2, 8, 9, 9, 9, 9, 6, 7, 1, 0, 3, 9, 9, 8, 3, 8, 0, 0, 8, 3, 6, 5, 4, 3, 2, 9, 8, 7, 4, 0, 6, 5, 1, 1, 4, 0, 9, 2, 0, 7, 0, 0, 8, 0, 6, 1, 5, 4, 6, 4
Offset: 1

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			1.54912659257756216836957253384940992693702986341004836289999671...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 136.

Crossrefs

Cf. A006752, A019610 (D(2)), A074962, A241421 (D(1)).

Programs

  • Mathematica
    (E^(Catalan/Pi)*Glaisher^3*Sqrt[Gamma[3/4]/Gamma[1/4]])/2^(1/12) // RealDigits[#, 10, 104]& // First
  • PARI
    default(realprecision, 100); A=exp(1/12-zeta'(-1)); exp(Catalan/Pi)*A^3*sqrt(gamma(3/4)/gamma(1/4))/2^(1/12) \\ G. C. Greubel, Aug 24 2018

Formula

D(x) = lim_{n->infinity} ( Product_{k=1..2n+1} (1+x/k)^((-1)^(k+1)*k) ).
D(x) = (e^(x/2-1/4)*A^3*G((x+1)/2)^2*Gamma(x/2)^(x-2)*Gamma((x+1)/2)^(1-x)*(Gamma((x+1)/2)/Gamma(x/2))^x)/(2^(1/12)*G(x/2)^2), where A is the Glaisher-Kinkelin constant and G is the Barnes G-function.
D(1/2) = (e^(C/Pi)*A^3*sqrt(Gamma(3/4)/Gamma(1/4)))/2^(1/12), where C is Catalan's constant.

A241421 Decimal expansion of D(1), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).

Original entry on oeis.org

2, 2, 3, 5, 8, 8, 5, 5, 9, 5, 5, 0, 8, 9, 6, 9, 8, 6, 4, 2, 8, 3, 9, 6, 4, 7, 9, 9, 3, 1, 1, 8, 9, 0, 6, 4, 4, 8, 4, 5, 1, 5, 9, 1, 2, 2, 8, 5, 9, 5, 2, 4, 7, 4, 7, 7, 9, 3, 4, 4, 7, 9, 7, 8, 2, 6, 0, 6, 2, 7, 0, 8, 1, 4, 5, 7, 2, 5, 2, 2, 1, 7, 9, 3, 2, 8, 3, 2, 0, 2, 9, 5, 2, 8, 3, 2, 3, 4, 6, 2, 8, 9, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			2.23588559550896986428396479931189064484515912285952474779344797826...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 136.

Crossrefs

Cf. A006752, A019610 (D(2)), A074962, A241420 (D(1/2)).

Programs

  • Mathematica
    RealDigits[Glaisher^6/(2^(1/6)*Sqrt[Pi]), 10, 104] // First
  • PARI
    default(realprecision, 100); A=exp(1/12-zeta'(-1)); A^6/(2^(1/6)* sqrt(Pi)) \\ G. C. Greubel, Aug 24 2018

Formula

D(x) = lim_{n->infinity} ( Product_{k=1..2n+1} (1+x/k)^((-1)^(k+1)*k) ).
D(x) = (e^(x/2-1/4)*A^3*G((x+1)/2)^2*Gamma(x/2)^(x-2)*Gamma((x+1)/2)^(1-x)*(Gamma((x+1)/2)/Gamma(x/2))^x)/(2^(1/12)*G(x/2)^2), where A is the Glaisher-Kinkelin constant and G is the Barnes G-function.
D(1) = A^6/(2^(1/6)*sqrt(Pi)).

A335027 Decimal expansion of Pi*(e-1)/2.

Original entry on oeis.org

2, 6, 9, 9, 0, 7, 0, 7, 8, 4, 5, 4, 1, 8, 8, 6, 9, 1, 3, 5, 0, 0, 4, 5, 3, 7, 4, 3, 1, 3, 3, 5, 3, 5, 8, 0, 5, 4, 1, 8, 8, 5, 9, 5, 6, 8, 1, 9, 5, 0, 0, 4, 5, 7, 0, 4, 5, 2, 3, 2, 8, 2, 6, 8, 9, 3, 5, 7, 0, 6, 1, 0, 2, 4, 3, 5, 5, 6, 0, 9, 0, 4, 4, 7, 2, 2, 6
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The value of an integral (see formula) first calculated by Cauchy in 1825 (with an error that was corrected in 1826).
This integral appears in the forward to Vălean's book, written by Paul J. Nahin.

Examples

			2.69907078454188691350045374313353580541885956819500...
		

Crossrefs

Cf. A000796 (Pi), A001113 (e), A019609 (Pi*e), A019610(Pi*e/2), A019669 (Pi/2), A335028.

Programs

  • Mathematica
    RealDigits[Pi*(E-1)/2, 10, 100][[1]]
  • PARI
    Pi*(exp(1)-1)/2 \\ Michel Marcus, May 20 2020

Formula

Equals Integral_{x=0..oo} (exp(cos(x)) * sin(sin(x))/x) * dx (Cauchy, 1825-26).
Equals Integral_{x=0..oo} (exp(cos(x)) * sin(x) * sin(sin(x))/x^2) * dx (Vălean, 2019).
Equals A019610 - A019669.

A335028 Decimal expansion of Pi*(exp(1/e) - 1)/2.

Original entry on oeis.org

6, 9, 8, 4, 8, 2, 6, 4, 2, 7, 1, 7, 8, 8, 4, 2, 7, 2, 2, 6, 7, 2, 3, 0, 3, 5, 8, 4, 9, 7, 7, 1, 2, 4, 4, 4, 5, 6, 2, 8, 4, 8, 3, 6, 6, 9, 3, 2, 9, 2, 9, 7, 9, 3, 6, 9, 9, 3, 7, 2, 3, 6, 6, 2, 3, 3, 4, 5, 9, 0, 3, 0, 1, 2, 5, 4, 3, 6, 9, 0, 4, 3, 0, 0, 6, 9, 8
Offset: 0

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The value of an integral (see formula) first calculated by Cauchy in 1825 (with an error that was corrected in 1826).

Examples

			0.69848264271788427226723035849771244456284836693292...
		

Crossrefs

Cf. A000796 (Pi), A001113 (e), A019609 (Pi*e), A019610(Pi*e/2), A073229 (e^(1/e)), A335027.

Programs

  • Mathematica
    RealDigits[Pi*(Exp[1/E] - 1)/2, 10, 100][[1]]
  • PARI
    Pi*(exp(1/exp(1)) - 1)/2 \\ Michel Marcus, May 20 2020

Formula

Equals Integral_{x=0..oo} (exp(cos(x)) * sin(sin(x)) * x /(x^2 + 1)) * dx.

A094936 Decimal expansion of 2/(Pi*e).

Original entry on oeis.org

2, 3, 4, 1, 9, 9, 3, 2, 6, 0, 9, 7, 2, 7, 6, 6, 4, 2, 7, 6, 0, 9, 6, 9, 0, 7, 3, 8, 6, 6, 6, 6, 7, 4, 8, 8, 8, 5, 5, 6, 5, 9, 6, 8, 5, 1, 0, 4, 2, 4, 5, 7, 9, 5, 5, 0, 7, 8, 8, 9, 0, 4, 3, 8, 8, 0, 6, 5, 1, 3, 8, 7, 0, 7, 4, 8, 7, 8, 2, 6, 1, 5, 3, 2, 0, 7, 5, 0, 4, 4, 0, 3, 6, 2, 3, 3, 4, 5, 7, 2, 6, 2, 6, 2
Offset: 0

Views

Author

Benoit Cloitre, Jun 18 2004

Keywords

Comments

If N(n) denotes the number of real roots of the n-th Bernoulli polynomial then lim_{n->oo} N(n)/n = 2/(e*Pi).

Examples

			0.23419932609727664276...
		

Crossrefs

Cf. A000796 (Pi), A001113 (e), A019609, A019610.

Programs

Formula

Equals 1/A019610. - Michel Marcus, Dec 07 2013
Showing 1-5 of 5 results.