A241481 Numbers such that the GCD of the x's that satisfy sigma(x) = sigma(n) is not equal to 1 while the number of such x's is not 1 either.
48, 68, 75, 80, 82, 104, 116, 122, 144, 156, 160, 189, 196, 212, 225, 237, 242, 273, 279, 291, 309, 328, 342, 356, 364, 403, 490, 513, 524, 531, 592, 597, 614, 640, 651, 679, 684, 688, 712, 784, 788, 804, 808, 810, 822, 833, 889, 898, 903, 922, 925, 927, 954
Offset: 1
Keywords
Examples
48 is in the sequence because sigma(48)=124 and the x's such that sigma(x) = 124 are 48 and 75, with gcd(48, 75) not equal to 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Programs
-
Maple
M:=1000: # to get all terms <= M N:= 0: for n from 1 to M do v:= numtheory:-sigma(n); N:= max(N,v); if assigned(R[v]) then R[v]:= igcd(R[v],n); S[v]:= S[v] union {n} else R[v]:= n; S[v]:= {n} fi; od: for n from M+1 to N do v:= numtheory:-sigma(n); if assigned(R[v]) then R[v]:= igcd(R[v],n); S[v]:= S[v] union {n} fi; od: A:= `union`(seq(S[v], v = select(t -> R[t]>1 and nops(S[t])>1, map(op,[indices(R)])))) intersect {$1..M}: sort(convert(A,list)); # Robert Israel, Oct 24 2019
-
PARI
sigv(n) = select(i->sigma(i) == n, vector(n, i, i)); isok(n) = my(v = sigv(sigma(n))); ((gcd(v)!=1) && (#v != 1));
-
PARI
isok(k) = my(v = invsigma(sigma(k))); #v > 1 && gcd(v) > 1; \\ Amiram Eldar, May 28 2025, using Max Alekseyev's invphi.gp (see links).
Comments