cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241483 Primes p such that p+2, p+4, p+6, p+8, p+10 and p+12 are all semiprime.

Original entry on oeis.org

1381, 3089, 10399, 49081, 53759, 63949, 76801, 98491, 107509, 109397, 113341, 143093, 182747, 204331, 209477, 239087, 252949, 255989, 313409, 396983, 426287, 500341, 602779, 677333, 812281, 832801, 1516531, 1574939, 1599151, 1619507, 1678639, 1866737, 2046449
Offset: 1

Views

Author

K. D. Bajpai, Apr 23 2014

Keywords

Examples

			1381 is prime and appears in the sequence because 1381+2 = 1383 = 3*461, 1381+4 = 1385 = 5*277, 1381+6 = 1387 = 19*73, 1381+8 = 1389 = 3*463, 1381+10 = 1391 = 13*107 and  1381+12 = 1393 = 7*199, which are all semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a,b,d,e,f,g,k; k:=ithprime(n); a:=bigomega(k+2); b:=bigomega(k+4); d:=bigomega(k+6);  e:=bigomega(k+8); f:=bigomega(k+10); g:=bigomega(k+12);  if a=2 and  b=2 and  d=2 and  e=2 and  f=2 and  g=2then RETURN (k);  fi; end: seq(KD(), n=1..200000);
  • Mathematica
    KD = {};  Do[t = Prime[n]; If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2 && PrimeOmega[t + 6] == 2 && PrimeOmega[t + 8] == 2 && PrimeOmega[t + 10] == 2 && PrimeOmega[t + 12] == 2, AppendTo[KD, t]], {n, 200000}]; KD
    Select[Prime[Range[155000]],Union[PrimeOmega/@(#+2Range[6])]=={2}&] (* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    is(n)=if(n%3==1, isprime((n+2)/3) && isprime((n+8)/3) && bigomega(n+4)==2 && bigomega(n+10)==2, isprime((n+4)\3) && isprime((n+10)\3) && bigomega(n+2)==2 && bigomega(n+8)==2) && isprime(n) && bigomega(n+6)==2 && bigomega(n+12)==2
    forprime(p=2,1e7,if(is(p),print1(p", "))) \\ Charles R Greathouse IV, Aug 25 2014