A241488 Primes p such that p+8, p+888 and p+8888 are also prime.
53, 263, 389, 431, 983, 1013, 1061, 1223, 1571, 1823, 2789, 3323, 3533, 3911, 4211, 5849, 6563, 6653, 7019, 7481, 8369, 8963, 9041, 9173, 9413, 9539, 9803, 10091, 10559, 10979, 12611, 12689, 12911, 13163, 13751, 13781, 14243, 14879, 15083, 16691, 17231, 17483
Offset: 1
Keywords
Examples
a(1) = 53 is a prime: 53+8 = 61, 53+888 = 941 and 53+8888 = 8941 are also prime. a(2) = 263 is a prime: 263+8 = 271, 263+888 = 1151 and 263+8888 = 9151 are also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD:= proc() local a,b,d,e; a:= ithprime(n); b:=a+8;d:=a+888;e:=a+8888; if isprime(b)and isprime(d)and isprime(e) then return (a) :fi; end: seq(KD(), n=1..5000);
-
Mathematica
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 8] && PrimeQ[p + 888] && PrimeQ[p + 8888], AppendTo[KD, p]], {n, 5000}]; KD (*For the b-file*) c = 0; p = Prime[n]; Do[If[PrimeQ[p + 8] && PrimeQ[p + 888] && PrimeQ[p + 8888], c = c + 1; Print[c, " ", p]], {n, 1, 5*10^6}]; Select[Prime[Range[2500]],AllTrue[#+{8,888,8888},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 31 2017 *)
-
PARI
s=[]; forprime(p=2, 18000, if(isprime(p+8) && isprime(p+888) && isprime(p+8888), s=concat(s, p))); s \\ Colin Barker, Apr 25 2014
Comments