A241489 Least number k not divisible by 10 such that k^3 contains n zeros.
16, 52, 101, 252, 1002, 1001, 10003, 10002, 10001, 100003, 100002, 100001, 1000003, 1000002, 1000001, 10000003, 10000002, 10000001, 100000003, 100000002, 100000001, 1000000003, 1000000002, 1000000001, 10000000003, 10000000002, 10000000001, 100000000003, 100000000002
Offset: 1
Examples
16 is not divisible by 10 and 16^3 = 4096, has 1 zero. So a(1) = 16. 52 is not divisible by 10 and 52^3 = 140608, has 2 zeros. So a(2) = 52.
Crossrefs
Cf. A134845.
Programs
-
PARI
a(n) = {k = 1; while ((d = digits(k^3)) && (((k % 10) == 0) || (sum(i=1, #d, d[i] == 0) != n)), k++); k;} \\ Michel Marcus, Apr 30 2014
-
Python
def Cu(n): for k in range(10**100): if k % 10 != 0: if str(k**3).count("0") == n: return k n = 1 while n < 100: print(Cu(n)) n += 1
Formula
For n > 6, a(n) = 10^(ceiling(n/3) + 1) + 3 - (n+2) mod 3.
Comments