A241529 Positive numbers k such that k^2 + k + 41 is composite and there are no positive integers a,c,d such that k = c*a*z^2 + ((((d+2)*(1/3))*c-2)*a/d+1)*z + ((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2 - (((d-1)*(1/3))*c+1)/d)/c for an integer z.
2887, 2969, 3056, 3220, 3365, 3464, 3565, 3611, 3719, 3746, 3814, 3836, 3874, 3879, 3955, 4142, 4147, 4211, 4277, 4371, 4403, 4483, 4564, 4572, 4661, 4730, 4813, 4881, 4888, 4902, 4906, 4965, 4982, 5132, 5175, 5208, 5410, 5431, 5509, 5527, 5564, 5624, 5669
Offset: 1
Keywords
References
- John Stillwell, Elements of Number Theory, Springer, 2003, page 3.
Links
- Matt C. Anderson, Graph of composite values for n^2 + n + 41 with a modular symmetry.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
Programs
-
Maple
# Euler considered the prime values for n^2 + n + 41; # This is a 76 second calculation on a 2.93 GHz machine h := n^2+n+41; y := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c; y2 := subs(n = y, h); y3 := factor(y2); # note that y is an expression in 4 variables. # After a composition of functions, an algebraic factorization # can be observed in y3. As long as y3 is an integer, it will # be composite. This is because y3 factors and both factors # are integers bigger than one. maxn := 6000; A := {}: for n to maxn do g := n^2+n+41: if isprime(g) = false then A := `union`(A, {n}) end if : end do: # now the A set contains composite values of the form # n^2 + n + 41 less than maxn. c := 1: a := 1: d := 1: z := -1: p := 41: q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c: A2 := A: while q < maxn do while `and`(q < maxn, d < 100) do while q < maxn do while q < maxn do A2 := `minus`(A2, {q}); A2 := `minus`(A2, {c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c}); z := z+1; A2 := `minus`(A2, {c*a*z^2-((((d+2)*(1/3))*c-2)*a/d+1)*(1*z)+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c}); q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c end do; a := a+1; z := -1; q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c : end do; d := d+1: a := 1: q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c : end do: c := c+1: d := 1: q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c : end do: A2; # Matt C. Anderson, May 13 2014
Comments