A241533 Smallest prime p such that 2*prime(n) - p^2 is semiprime, or a(n)=0 if there is no such p.
0, 0, 2, 2, 0, 2, 3, 2, 5, 3, 2, 3, 5, 2, 3, 7, 5, 2, 7, 3, 2, 5, 5, 3, 3, 5, 2, 3, 2, 3, 7, 3, 3, 2, 3, 2, 3, 5, 5, 5, 7, 2, 13, 2, 19, 2, 3, 3, 3, 2, 7, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 7, 5, 5, 2, 0, 13, 5, 3, 2, 3, 7, 7, 3, 3, 7, 5, 3, 3, 5, 5, 2, 7, 2, 3, 13
Offset: 1
Keywords
Examples
Let n=16, then 2*prime(16) = 2*53 = 106. We have 106-4=102, 106-9=97, 106-25=81, 106-49=57, and only the last number is semiprime. So a(16)=7.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..1000
Programs
-
PARI
a(n) = {for (i=1, n, if ((v = 2*prime(n) - prime(i)^2) <= 0, break;); if (bigomega(v) == 2, return (prime(i))););} \\ Michel Marcus, May 09 2014