A241534 Number of integer arithmetic means of 2 distinct divisors of n.
0, 0, 1, 1, 1, 2, 1, 3, 3, 2, 1, 7, 1, 2, 6, 6, 1, 6, 1, 7, 6, 2, 1, 16, 3, 2, 6, 7, 1, 12, 1, 10, 6, 2, 6, 18, 1, 2, 6, 16, 1, 12, 1, 7, 15, 2, 1, 29, 3, 6, 6, 7, 1, 12, 6, 16, 6, 2, 1, 34, 1, 2, 15, 15, 6, 12, 1, 7, 6, 12, 1, 39, 1, 2, 15, 7, 6, 12, 1, 29
Offset: 1
Keywords
Examples
Triangle T(n, k) starts for n > 2: 2, 3, 3, 2, 4, 4, 3, 5, 6, 2, 5, 6; where T(n, k) = the values of k such that 2k = q + g; q, g are distinct divisors of n. a(20) = 7 because (1,5), (2,4), (2,10), (2,20), (4,10), (4,20) and (10,20) are the 7 values of (g,q) such that (g+q)/2 is an integer. - _Colin Barker_, May 10 2014
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Cf. A027750.
Programs
-
Mathematica
Table[Sum[Sum[(1 - Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Oct 06 2020 *)
-
PARI
a(n) = c=0; fordiv(n, g, fordiv(n, q, if(g
Colin Barker, May 10 2014
Formula
a(n) = Sum_{d1|n, d2|n, d1 < d2} (1 - ceiling((d1+d2)/2) + floor((d1+d2)/2)). - Wesley Ivan Hurt, Oct 06 2020
Extensions
Several incorrect terms corrected, and more terms added by Colin Barker, May 10 2014