cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241535 Smallest semiprime q such that 2*prime(n) - q is semiprime, or a(n)=0 if there is no such q.

Original entry on oeis.org

0, 0, 4, 4, 0, 4, 9, 4, 21, 9, 4, 9, 25, 4, 9, 15, 25, 4, 15, 9, 4, 15, 21, 9, 9, 15, 4, 9, 4, 9, 33, 9, 9, 4, 9, 4, 9, 21, 15, 25, 35, 4, 21, 4, 33, 4, 9, 9, 9, 4, 15, 9, 4, 9, 9, 9, 9, 4, 9, 9, 4, 21, 25, 25, 4, 51, 33, 25, 9, 4, 9, 15, 21, 9, 9, 21, 15, 9, 9, 15, 21, 4, 21, 4
Offset: 1

Views

Author

Vladimir Shevelev, Apr 25 2014

Keywords

Comments

Conjecture: every even semiprime more than 22 is a sum of two semiprimes.
All terms are either 4 or odd.
First occurrence of k-th odd semiprime (A046315): 7, 16, 9, 13, 31, 41, 104, 134, 66, 412, 2769, 447, 1282, 3868, 7003, 3601, 48649, 11016, 5379, 41644, 34575, 83474, 120165, 135566, 21335, 394140, 14899, 876518, 434986, 173914, 691409, 1854580, 3741206, 714807, 1001321, 6427837, 4267513, 14809496, 7795998, 26617567, 2001937, 13958857, 9217135, 18815676, ..., . - Robert G. Wilson v, Apr 26 2014
If a(n) = 4, then 2*prime(n)-4=2*(prime(n)-2) is a semiprime, thus prime(n)-2 is a prime, so prime(n) belongs to A006512 (greater of twin primes). - Michel Marcus, Mar 26 2015

Examples

			Let n=16, then 2*prime(16) = 2*53 = 106. We have 106-4=102, 106-6=100, 106-9=97, 106-10=96, 106-14=92, 106-15=91 and only the last number is semiprime. So a(16)=15.
		

Crossrefs

Programs

  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[ sgn < 0, sp--, sp++]]; If[ sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Block[{p2 = 2 Prime[n], sp = 4}, While[ PrimeOmega[p2 - sp] != 2, sp = NextSemiPrime[sp]]; If[ sp != p2, sp, 0]]; Array[f, 75] (* Robert G. Wilson v, Apr 25 2014 *)

Extensions

More terms from Robert G. Wilson v, Apr 25 2014