A241537 Cubes c such that c + 1234567890 is prime where 1234567890 is the first pandigital number with digits in order.
1, 50653, 79507, 456533, 571787, 1295029, 1685159, 1771561, 2248091, 2685619, 3307949, 4173281, 7880599, 9393931, 10218313, 10793861, 11697083, 17373979, 18191447, 22665187, 30664297, 47045881, 70444997, 111284641, 146363183, 151419437, 156590819, 192100033
Offset: 1
Keywords
Examples
50653 = 37^3 and appears in the sequence because 50653 + 1234567890 = 1234618543, which is prime. 79507 = 43^3 and appears in the sequence because 79507 + 1234567890 = 1234647397, which is prime. 64000 = 40^3 but not included in the sequence since 64000 + 1234567890 = 1234631890 = (2)*(5)*(29389)*(4201), which is not prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD := proc() local a,c; c:=n^3;a:=c+1234567890; if isprime(a) then RETURN (c); fi; end: seq(KD(), n=1..1000);
-
Mathematica
lst={}; Do[c=n^3; If[PrimeQ[c+1234567890], AppendTo[lst,c]], {n,1,1000}]; lst (*For the b-file*) m=0; c=n^3; a=c+1234567890; Do[If[PrimeQ[a],m++; Print[m," ",c]], {n,1,4*10^5}]
-
PARI
s=[]; for(n=1, 1000, c=n^3; if(isprime(c+1234567890), s=concat(s, c))); s \\ Colin Barker, Apr 25 2014