A241538 Squares s such that s + 1234567890 is prime.
1, 169, 1681, 6889, 8281, 11881, 24649, 27889, 41209, 57121, 58081, 67081, 80089, 101761, 124609, 175561, 185761, 201601, 212521, 332929, 380689, 413449, 461041, 508369, 534361, 609961, 625681, 654481, 683929, 693889, 822649, 829921, 833569, 1014049, 1018081
Offset: 1
Examples
169 = 13^2 and appears in the sequence because 169 + 1234567890 = 1234568059, which is prime. 1681 = 41^2 and appears in the sequence because 1681 + 1234567890 = 1234569571, which is prime. 625 = 25^2 but is not included in the sequence since 625 + 1234567890 = 1234568515 = (5)*(246913703), which is not prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD := proc() local a,s; s:=n^2;a:=s+1234567890; if isprime(a) then RETURN (s); fi; end: seq(KD(), n=1..2000);
-
Mathematica
A241538 = {}; Do[s = n^2; If[PrimeQ[s + 1234567890], AppendTo[A241538, s]], {n, 2000}]; A241538 (* For the b-file *) c = 0; s = n^2; a = s + 1234567890; Do[If[PrimeQ[a], c++; Print[c, " ", s]], {n, 4*10^5}] (* Bajpai *) Select[Range[1000]^2, PrimeQ[# + 1234567890] &] (* Alonso del Arte, Apr 25 2014 *)
Comments