A241539 Smallest k>=1 such that the n-th semiprime + or - k are both primes, or a(n)=0 if there is no such k.
1, 1, 2, 3, 3, 2, 2, 9, 6, 3, 4, 3, 6, 9, 2, 15, 12, 8, 12, 4, 15, 9, 6, 2, 15, 6, 15, 12, 3, 14, 12, 4, 15, 6, 3, 2, 12, 9, 12, 18, 9, 14, 2, 6, 3, 10, 15, 6, 6, 33, 18, 9, 8, 12, 15, 12, 4, 15, 10, 6, 6, 3, 10, 9, 24, 6, 27, 18, 14, 15, 18, 6, 21, 8, 30, 3
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Wikipedia, Chen's theorem
Programs
-
Mathematica
sk[s_]:=Module[{k=1},While[!PrimeQ[s+k]||!PrimeQ[s-k],k++];k]; sk/@Select[Range[300],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 07 2025 *)
-
PARI
list(lim) = my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358 sp = list(1000); vector(#sp, n, k=1; while(!isprime(sp[n]+k) || !isprime(sp[n]-k), k++); k) \\ Colin Barker, May 31 2014
Extensions
More terms from Peter J. C. Moses, Apr 28 2014
Comments