A240667 a(n) is the GCD of the solutions x of sigma(x) = n; sigma(n) = A000203(n) = sum of divisors of n.
1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 1, 9, 13, 8, 0, 0, 1, 0, 19, 0, 0, 0, 1, 0, 0, 0, 12, 0, 29, 1, 1, 0, 0, 0, 22, 0, 37, 18, 27, 0, 1, 0, 43, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 49, 0, 0, 1, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 1, 0, 73, 0, 0, 0, 45, 0, 1, 0, 0
Offset: 1
Keywords
Examples
There are no integers such that sigma(x) = 2, so a(2) = 0. There is a single integer, x = 2, such that sigma(x) = 3, so a(3) = 2. There are 2 integers, x = 6 and 11, such that sigma(x)=12, their gcd is 1, so a(12) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Programs
-
Maple
A240667 := n -> igcd(op(select(k->sigma(k)=n, [$1..n]))): seq(A240667(n), n=1..82); # Peter Luschny, Apr 13 2014
-
Mathematica
a[n_] := GCD @@ Select[Range[n], DivisorSigma[1, #] == n&]; Array[a, 100] (* Jean-François Alcover, Jul 30 2018 *)
-
PARI
sigv(n) = select(i->sigma(i) == n, vector(n, i, i)); a(n) = {v = sigv(n); if (#v == 0, 0, gcd(v));}
-
PARI
a(n) = my(s = invsigma(n)); if(#s, gcd(s), 0); \\ Amiram Eldar, Dec 19 2024, using Max Alekseyev's invphi.gp
Formula
a(A007369(n)) = 0.
Comments