cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238343 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k descents, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 9, 0, 0, 0, 0, 11, 19, 2, 0, 0, 0, 0, 15, 41, 8, 0, 0, 0, 0, 0, 22, 77, 29, 0, 0, 0, 0, 0, 0, 30, 142, 81, 3, 0, 0, 0, 0, 0, 0, 42, 247, 205, 18, 0, 0, 0, 0, 0, 0, 0, 56, 421, 469, 78, 0, 0, 0, 0, 0, 0, 0, 0, 77, 689, 1013, 264, 5, 0, 0, 0, 0, 0, 0, 0, 0, 101, 1113, 2059, 786, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Counting ascents gives the same triangle.
For n > 0, also the number of compositions of n with k + 1 maximal weakly increasing runs. - Gus Wiseman, Mar 23 2020

Examples

			Triangle starts:
00:    1;
01:    1,    0;
02:    2,    0,    0;
03:    3,    1,    0,    0;
04:    5,    3,    0,    0,   0;
05:    7,    9,    0,    0,   0, 0;
06:   11,   19,    2,    0,   0, 0, 0;
07:   15,   41,    8,    0,   0, 0, 0, 0;
08:   22,   77,   29,    0,   0, 0, 0, 0, 0;
09:   30,  142,   81,    3,   0, 0, 0, 0, 0, 0;
10:   42,  247,  205,   18,   0, 0, 0, 0, 0, 0, 0;
11:   56,  421,  469,   78,   0, 0, 0, 0, 0, 0, 0, 0;
12:   77,  689, 1013,  264,   5, 0, 0, 0, 0, 0, 0, 0, 0;
13:  101, 1113, 2059,  786,  37, 0, 0, 0, 0, 0, 0, 0, 0, 0;
14:  135, 1750, 4021, 2097, 189, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
15:  176, 2712, 7558, 5179, 751, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
From _Gus Wiseman_, Mar 23 2020: (Start)
Row n = 5 counts the following compositions:
  (5)          (3,2)
  (1,4)        (4,1)
  (2,3)        (1,3,1)
  (1,1,3)      (2,1,2)
  (1,2,2)      (2,2,1)
  (1,1,1,2)    (3,1,1)
  (1,1,1,1,1)  (1,1,2,1)
               (1,2,1,1)
               (2,1,1,1)
(End)
		

Crossrefs

T(3n,n) gives A000045(n+1).
T(3n+1,n) = A136376(n+1).
Row sums are A011782.
Compositions by length are A007318.
The version for co-runs or levels is A106356.
The case of partitions (instead of compositions) is A133121.
The version for runs is A238279.
The version without zeros is A238344.
The version for weak ascents is A333213.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, expand(
           add(b(n-j, j)*`if`(j (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*If[jJean-François Alcover, Jan 08 2015, translated from Maple *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],n==0||Length[Split[#,LessEqual]]==k+1&]],{n,0,9},{k,0,n}] (* Gus Wiseman, Mar 23 2020 *)

Formula

Sum_{k=0..n} k * T(n,k) = A045883(n-2) for n>=2.

A238344 Irregular triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k descents, n>=0, 0<=k<=floor(n/3).

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 3, 7, 9, 11, 19, 2, 15, 41, 8, 22, 77, 29, 30, 142, 81, 3, 42, 247, 205, 18, 56, 421, 469, 78, 77, 689, 1013, 264, 5, 101, 1113, 2059, 786, 37, 135, 1750, 4021, 2097, 189, 176, 2712, 7558, 5179, 751, 8, 231, 4128, 13780, 11998, 2558, 73, 297, 6208, 24440, 26400, 7762, 429
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Same as A238343, with zeros omitted.
Row sums are A011782.
T(3n,n) = A000045(n+1).
T(3n+1,n) = A136376(n+1).

Examples

			Triangle starts:
00:    1;
01:    1;
02:    2;
03:    3,     1;
04:    5,     3;
05:    7,     9;
06:   11,    19,      2;
07:   15,    41,      8;
08:   22,    77,     29;
09:   30,   142,     81,      3;
10:   42,   247,    205,     18;
11:   56,   421,    469,     78;
12:   77,   689,   1013,    264,      5;
13:  101,  1113,   2059,    786,     37;
14:  135,  1750,   4021,   2097,    189;
15:  176,  2712,   7558,   5179,    751,     8;
16:  231,  4128,  13780,  11998,   2558,    73;
17:  297,  6208,  24440,  26400,   7762,   429;
18:  385,  9201,  42358,  55593,  21577,  1945,  13;
19:  490, 13502,  71867, 112814,  55867,  7465, 139;
20:  627, 19585, 119715, 221639, 136478, 25317, 927;
...
		

Crossrefs

Cf. A045883.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, expand(
           add(b(n-j, j)*`if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, j]*If[jJean-François Alcover, Feb 11 2015, after Maple *)

Formula

Sum_{k=0..floor(n/3)} k * T(n,k) = A045883(n-2) for n>=2.
Showing 1-2 of 2 results.