A241667 Sum of the iterates of A058026 up to and including either 0 or 1.
0, 0, 1, 0, 4, 0, 9, 0, 4, 0, 13, 0, 24, 0, 4, 0, 19, 0, 36, 0, 9, 0, 30, 0, 19, 0, 13, 0, 40, 0, 69, 0, 13, 0, 19, 0, 54, 0, 24, 0, 63, 0, 104, 0, 13, 0, 58, 0, 54, 0, 19, 0, 70, 0, 40, 0, 36, 0, 93, 0, 152, 0, 19, 0, 46, 0, 111, 0, 30, 0, 99, 0, 170, 0, 19
Offset: 1
Keywords
Examples
A058026(7)=5, A058026(5)=3, A058026(3)=1, so a(7)=5+3+1=9. A058026(4)=0, so a(4)=0.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..40000
- Colin Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, arXiv:1506.05426 [math.NT], 2015.
- C. Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, J. Int. Seq. 18 (2015) # 15.2.1
Programs
-
Mathematica
L[n_, m_] := If[Min[Select[Divisors[n], PrimeQ]] <= m, 0, n*Times @@ (1 - m/(Select[Divisors[n], PrimeQ]))] a[0] := 0 a[3] := 1 a[n_] := L[n, 2] + a[L[n, 2]] Table[a[i], {i, 2, 30}]
-
PARI
a058026(n) = sumdiv(n, d, n/d*moebius(d)*numdiv(d)); a(n) = {s = 0; itn = n; while((itn) && (itn != 1), vb = a058026(itn); s += vb; itn = vb); s;} \\ Michel Marcus, May 21 2014
Comments