A241684 The total number of rectangles appearing in the Thue-Morse sequence logical matrices after n stages.
0, 0, 4, 8, 32, 120, 464, 1848, 7312, 29240, 116624, 466488, 1864592, 7458360, 29827984, 119311928, 477225872, 1908903480, 7635526544, 30542106168, 122168075152, 488672300600, 1954687804304, 7818751217208, 31274999276432, 125099997105720, 500399966053264, 2001599864213048
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Wikipedia, Thue-Morse sequence
- Index entries for linear recurrences with constant coefficients, signature (4,5,-20,-4,16)
Crossrefs
Cf. A010060.
Programs
-
Magma
[(8+3*2^n+2*4^n+(-1)^n*(24-2^n))/18: n in [0..30]]; // Vincenzo Librandi, Sep 29 2017
-
Mathematica
CoefficientList[Series[-4*x^2*(8*x^3 - 5*x^2 - 2*x + 1)/((x - 1)*(x + 1)*(2*x - 1)*(2*x + 1)*(4*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 28 2017 *)
-
PARI
x='x+O('x^50); concat([0,0], Vec(-4*x^2*(8*x^3-5*x^2-2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)))) \\ G. C. Greubel, Sep 28 2017
Formula
G.f.: -4*x^2*(8*x^3-5*x^2-2*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)). - Colin Barker, Apr 27 2014
a(n) = (8 + 3*2^n + 2*4^n + (-1)^n*(24 - 2^n))/18, n>0. - R. J. Mathar, May 04 2014
Extensions
Terms a(21) onward added by G. C. Greubel, Sep 28 2017
Comments