cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241684 The total number of rectangles appearing in the Thue-Morse sequence logical matrices after n stages.

Original entry on oeis.org

0, 0, 4, 8, 32, 120, 464, 1848, 7312, 29240, 116624, 466488, 1864592, 7458360, 29827984, 119311928, 477225872, 1908903480, 7635526544, 30542106168, 122168075152, 488672300600, 1954687804304, 7818751217208, 31274999276432, 125099997105720, 500399966053264, 2001599864213048
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 27 2014

Keywords

Comments

a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 1 column or 1 row, 2 columns) that appear as rectangles in the Thue-Morse logical matrices after n stages. See links for more details.

Crossrefs

Cf. A010060.

Programs

  • Magma
    [(8+3*2^n+2*4^n+(-1)^n*(24-2^n))/18: n in [0..30]]; // Vincenzo Librandi, Sep 29 2017
  • Mathematica
    CoefficientList[Series[-4*x^2*(8*x^3 - 5*x^2 - 2*x + 1)/((x - 1)*(x + 1)*(2*x - 1)*(2*x + 1)*(4*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(-4*x^2*(8*x^3-5*x^2-2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)))) \\ G. C. Greubel, Sep 28 2017
    

Formula

a(n) = A007590(A005578(n+1)) - (A139598(A000975(n-2)) + A007590(A000975(n-1))).
G.f.: -4*x^2*(8*x^3-5*x^2-2*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)). - Colin Barker, Apr 27 2014
a(n) = (8 + 3*2^n + 2*4^n + (-1)^n*(24 - 2^n))/18, n>0. - R. J. Mathar, May 04 2014

Extensions

Terms a(21) onward added by G. C. Greubel, Sep 28 2017