A241701 Number T(n,k) of Carlitz compositions of n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
1, 1, 1, 2, 1, 2, 2, 3, 4, 4, 8, 2, 5, 13, 5, 6, 21, 12, 8, 33, 27, 3, 10, 50, 53, 11, 12, 73, 98, 31, 15, 106, 174, 78, 5, 18, 150, 296, 175, 22, 22, 209, 486, 363, 72, 27, 289, 781, 715, 204, 8, 32, 393, 1222, 1342, 510, 43, 38, 529, 1874, 2421, 1168, 159
Offset: 0
Examples
T(6,0) = 4: [6], [1,5], [2,4], [1,2,3]. T(6,1) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2]. T(6,2) = 2: [3,2,1], [2,1,2,1]. T(7,0) = 5: [7], [3,4], [1,6], [2,5], [1,2,4]. T(7,1) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3]. T(7,2) = 5: [4,2,1], [2,1,3,1], [3,1,2,1], [1,3,2,1], [1,2,1,2,1]. Triangle T(n,k) begins: 00: 1; 01: 1; 02: 1; 03: 2, 1; 04: 2, 2; 05: 3, 4; 06: 4, 8, 2; 07: 5, 13, 5; 08: 6, 21, 12; 09: 8, 33, 27, 3; 10: 10, 50, 53, 11; 11: 12, 73, 98, 31; 12: 15, 106, 174, 78, 5; 13: 18, 150, 296, 175, 22; 14: 22, 209, 486, 363, 72; 15: 27, 289, 781, 715, 204, 8;
Links
- Alois P. Heinz, Rows n = 0..250, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, expand( add(`if`(j=i, 0, b(n-j, j)*`if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..20);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[If[j == i, 0, b[n-j, j]*If[jJean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
Formula
Sum_{k=0..floor(n/3)} (k+1) * T(n,k) = A285994(n) (for n>0).
Comments