A241740 Number of partitions p of n such that (number of numbers in p of form 3k+2) < (number of numbers in p of form 3k).
0, 0, 0, 1, 1, 1, 3, 4, 4, 7, 10, 12, 17, 24, 30, 40, 53, 70, 90, 118, 152, 194, 244, 316, 396, 497, 626, 784, 960, 1202, 1483, 1816, 2230, 2738, 3312, 4042, 4908, 5922, 7141, 8627, 10327, 12388, 14832, 17703, 21075, 25120, 29795, 35321, 41822, 49439, 58286
Offset: 0
Examples
a(8) counts these 4 partitions: 611, 431, 3311, 311111.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k]; Table[Count[f[n], p_ /; s[2, p] < s[0, p]], {n, 0, z}] (* A241740 *) Table[Count[f[n], p_ /; s[2, p] == s[0, p]], {n, 0, z}] (* A241741 *) Table[Count[f[n], p_ /; s[2, p] > s[0, p]], {n, 0, z}] (* A241742 *)
Comments